
TKP4555 Process-System Engineering Specialization Module

TKP11 Advanced Process Simulation
Handeling stiff ordinary differential equations (ODEs) using imex-methods

in julia

Kjetil Bohman Sonerud
Department of Chemical Engineering

Norwegian University of Science and Technology

Supervisor:
Heinz A. Preisig
John C. Morud





ii

Abstract

This work gives the reader an introduction to stiff problems, and their relevance to the numeric solution
of differential equations that are central to science and engineering disciplines in general and chemical
engineering in particular. The basic theory of differential equations, numerical methods for solving these
and the concept of a stiff problem is introduced, and relevant examples are given.

The main focus is on imex methods, where the stiff part of the problem is solved with an implicit
numerical method and the non-stiff part is solved with an explicit method. The test case chosen is the
well-known Robertson kinetics problem (Robertson, 1966), which is known to be stiff. Both the original
and an expanded version of the problem is solved with an explicit (ex) Euler solver, an implicit (im) Euler
solver and an imex Euler solver implemented in the programming language julia. The performance and
merits of the different methods are contrasted and discussed.

For the current case, the im Euler method outperforms the imex Euler method. This slightly surprising
fact is likely due to non-optimized implementation of the latter, along with the fact that the non-stiff
part of the Robertson problem is small. Even for the expanded problem – specifically chosen to enhance
the relative performance of the imex solver – the im Euler solver appears to be the fastest in terms
of both number of Newton-Raphson iterations and CPU-time. Thus, the benefit of solving the non-stiff
part with an ex method is apparently not sufficient to enhance the performance of the imex method
enough to compete with the pure im method. Both the im Euler solver and the imex Euler solver clearly
outperform the ex Euler solver, however – thus, it is clear that the problem is indeed stiff.
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Chapter 1

Introduction

In general, many of the practical problems in science and engineering may be formulated as differential
equations. In chemical engineering in particular, these are at the core of many – if not most – of the
models employed. Thus, understanding how to correctly solve them is of great importance to the chemical
engineer.

Systems of ordinary differential equations (ODEs) arise when considering lumped systems1, or if the
partial differential equations (PDEs) that arise from considering distributed systems2are approximated
using finite difference schemes or similar approximations. As higher-order ODEs may be reduced to a
system of first-order ordinary differential equations, the solution of the latter covers a wide range of
applications, and is – in practise – often non-trivial. Since very few of the differential equations that are
of practical interest may be solved analytically, approximating the solution through the use of numerical
methods are often the only viable option. One of the central challenges that arises when solving such a
system of first-order ODEs numerically are the ones related to stiffness. Handling this through the use
of so-called imex methods (further discussed in chapter 3) is the main focus of the current work.

What is a stiff differential equation? Simply put, it is (a set of) differential equations that unfold on
sufficiently different time scales. Typically – using chemical engineering as an example – this may be
reactions with vastly different reaction rates (i.e. both fast and slow reactions occurring at the same
time, to be further explored in chapter 4), or phenomena such as simultaneous diffusion and reaction –
where one is assumed to be faster than the other. As will be further discussed in section 2.3, the concept
of stiffness is largely a practical one – no single theoretical definition applies to all problems normally
considered stiff.

“If a numerical method is forced to use, in a certain interval of integration, a step length
which is excessively small in relation to the smoothness of the exact solution in that interval,
then the problem is said to be stiff in that interval.”
– (Lambert, 1991)

1An example is the assumption of perfect mixing in a tank such as an CSTR, so that there are no concentration gradients.
The tank may then be regarded as a lumped system.

2An example is a PFR, where the concentration gradients in the axial direction seldom may be neglected. If the time
evolution of the concentration gradients are of interest, a (set of) partial differential equation(s) must be solved.

1



2 Chapter 1. Introduction

It is an observed fact – to be further discussed in chapter 3 – that implicit methods normally outperform
explicit methods when stiff problems arise. Using an explicit method to solve a stiff problem demands
a prohibitively small time step as the problems grow sufficiently stiff. That being said, in theory an
explicit method can solve all stiff problems as long as the time step chosen is small enough. That is, if
time was not an issue, stiffness would not be an issue either. Thus, the latter is very much a practical
problem, as noted above.

A natural question arises: if implicit methods can solve systems of equations where explicit methods fail,
why are these methods not used all the time? The answer is simply that explicit methods – when they
work, i.e. for sufficiently non-stiff systems – are computationally less demanding, thus much faster. As
shall be seen in chapter 2, when using an implicit method there is (in general) a non-linear system of
equations that must be solved at each time step using e.g. Newton-Raphson method or similar. This is
computationally costly, especially for large systems. Thus, if possible, explicit methods are preferred.

In other words, there is always a trade-off between using explicit methods and implicit methods – the
first is cheap for non-stiff systems, but due to the fact that very small time-steps must be used for stiff
systems, there will come to a point when using the implicit solver is actually cheaper3, even though a
system of equations must be solved at each time step. The basic idea of an imex method is to exploit
this fact and introduce a compromise, as shall be seen in section 2.4.

In the present work, the explicit Euler scheme (ex Euler, also called “forward Euler”) and the implicit
Euler scheme (im Euler, also called “backward Euler”) are the numerical solvers implemented. The two
are combined into an imex Euler solver, as discussed in chapter 3. The implicit Euler and explicit Euler
methods are largely chosen for clearity and simplicity

• They are simple to implement

• They are simple to analyse

• They illustrate the fundamental difference between implicit and explicit methods

The actual implementation of the methods discussed in this work is performed in the fairly recent
programming language julia4, which has been an interesting experience. For the purpose of the current
project, there is little difference in terms of implementation between julia and matlab. The main
practical challenge is lack of good tools for data visualization – that is, plotting in julia is not as
convenient as in matlab for the time being.

A simple example of a stiff system of differential equations

The following simple example is included in order to introduce the concept of stiffness by comparing the
analytical solution of the differential equation system with the numerical solution using ex Euler and

3Cheap in terms of computational time needed to solve the problem, measured in CPU-time
4The language was–and still is–being developed at MIT. Launched in February 2012, julia is a “(...) high-level,

high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other
technical computing environments.” Thus, users from Python or matlab environments should feel at home. To the user,
julia behaves as an interpreted language, using a high-performance just-in-time (JIT) compiler for speed. It is claimed–
supported by benchmarking tests–that the speed of julia approaches the speed of compiled languages such as Fortran and
C for many tasks. See http://www.julialang.org for more information.

http://www.julialang.org


3

im Euler with different time steps. It will become quite clear that the problem is indeed stiff, and that
the ex Euler solver needs very small time steps compared with the im Euler solver in order to provide a
stable solution to the problem of the following second-order linear ordinary differential equation (ODE)

y′′ + 101y′ + 100y = 0 (1.1)

Rewritten to a system of first-order ODEs with a set of proposed initial conditions, the following is
obtained

y′1 = +y2 Initial condition: y1(0) = 1

y′2 = −100y1 −101y2 Initial condition: y2(0) = 0

(1.2)

The analytic solution to the above system may be found as

y(t) = A exp(−t) +B exp(−100t) =
100

99
A exp(−t)− 1

99
exp(−100t) (1.3)

where the values of A and B may be found from the initial conditions. It is apparent from the above
that the second term will be a very rapid transient compared to the first term, which is visualized in
fig. 1.1.
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Figure 1.1: Visualization of the stiff ODE-system given in eq. (1.2). The exact solution is plotted, and
each of the terms that constitutes this solution is then plotted separately. The rapid transient of the
second term in the exact solution given in eq. (1.3) is evident.

The analytic solution to the eq. (1.2) is shown in fig. 1.2 along with the solution by the ex Euler solver
(described later in section 3.1) and the im Euler solver (described later in section 3.2). It is observed that
the ex Euler solver fails spectacularly with a step size of ∆t = 1 s, and that there are obvious stability
issues. The im Euler solver on the other hand does a fair job of approximating the exact solution, even
though there are only 10 time steps in total. When the step size is shortened considerably – by a factor
of 103 – both methods approximate the exact solution quite well. The latter case is illustrated in fig. 1.3.

This simple example show a few interesting points when it comes to stiff differential equations:

• The step size must be very short for explicit methods to cope with sharp transients
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Figure 1.2: Comparison of the analytic solution to those of ex Euler and im Euler method for the
ODE-system described in eq. (1.2). The time step is ∆t = 1 s. Note that the im Euler solution is quite
close to the analytical, but that the ex Euler method fails spectacularly.
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Figure 1.3: Comparison of the analytic solution to those of ex Euler and im Euler method for the
ODE-system described in eq. (1.2). The time step is ∆t = 1× 10−3 s. Now, both ex Euler and im Euler
are very close to the actual analytic solution.

• The implicit solver show no stability issues even when the step size is large – that is, fewer time
steps in total compared to the explicit method

• Apparently, the accuracy of the explicit method is not the issue – rather, the stability of the method
is the problem when the ODE system at hand is stiff

The latter point may be taken as a definition of stiff problems – stability, rather than accuracy – is
governing the step size needed for the explicit method.



Chapter 2

Theory

The purpose of this chapter is to briefly cover the basic theory regarding ordinary differential equations
(ODEs), with focus on initial value problems (IVP). The concept of stiffness will be further explored,
and the strategy of using an imex solver to handle such systems efficiently will be introduced. Other
strategies for handling stiff systems will be mentioned. For a more in-depth coverage of differential
equations and their applications to chemical engineering, (Kreyszig, 2010), (Davis, 1984) and (Beers,
2007) is recommended literature.

2.1 IVP for a system of ODEs

Looking at a system of ODEs describing the behaviour of a set of variables in time, the central problem
is calculating the trajectories of these variables over time. The solution sought is the n equations yj(t)
describing the trajectories, given by the differential equation system

dy

dt
= ẏ(t) = f(y(t); Θ), y(t0) = y

0
(2.1)

where y(t) = [y1(t), y2(t), . . . , yn(t)]> is the state vector and y
0

= [y1(0), y2(0), . . . , yn(0)]> is the vector
containing the initial values, i.e. the initial condition given at t = t0. Usually, this is the same as t = 0,
but this need not be the case in general. Θ = [k1, k2, . . .]

> are possible parameters. Given that the
integral of the function f(y(t); Θ) is defined, the exact solution to the above problem may be found by
integration

y(t) = y
0

+

∫ t

t0

f(y(τ); Θ) dτ (2.2)

This approach is possible for some simple examples, but is not possible for a general system. Thus,
numerical methods are needed. Note that the problem of calculating the numerical solution to an IVP of
ODEs are closely related to the numeric evaluation of a definite integral. The general aim is to develop
methods that produce an approximation that resembles the exact solution to within the chosen tolerance.

Note that while the variable of integration above is interpreted to be time, this could also be another

5



6 Chapter 2. Theory

variable – typically a spatial coordinate. It is also true that higher-order ODEs may be reduced to a
system of first-order ODEs. The same is true for partial differential equations (PDEs) – in many cases,
it is possible to reduce a given PDE to a system of first-order ODEs using a finite difference scheme or
similar approaches. This is discussed in the literature mentioned earlier, e.g. (Beers, 2007). Thus, the
formulation given in eq. (2.1) is quite general, and covers a whole range of problems of interest to the
chemical engineer.

2.2 Time-marching ODE-IVP solvers

The solver update y(t) in discrete time steps of size ∆t to compute y(tk). This length of the time step
may in theory vary throughout the integration, but for the simple methods regarded in this work no
time-step adjustment is considered. The exact update in each time step is

y(tk + ∆t)− y(tk) =

∫ tk+∆t

tk

ẏ(τ) dτ (2.3)

=

∫ tk+∆t

tk

f(y(τ); Θ) dτ (2.4)

Following the notation of (Beers, 2007), the approach is to approximate this exact calculation by a
method that calculates

y
k+1
− y

k
= (∆t) · F [y

k
,y

k+1
, f(y; Θ)]︸ ︷︷ ︸

Defines the numerical method

(2.5)

If it is reasonable to assume that y
k

= y(tk), then the above scheme will allow calculation of y
k+1
≈

y(tk+1). It is evident that a local error is introduced at each time step due to the fact that eq. (2.3) is
approximated by eq. (2.5). From the general definition in the latter equation, both the ex and im Euler
schemes may be realized, as discussed in chapter 3.

Note that the family of approximations described in the latter equation are single-step integration meth-
ods; only the information about the state vector at the beginning and end of the time step ∆t – that is
y
k
and y

k+1
– are used. Multi-step methods, as described in (Butcher, 2008), are often more effective

and yield better approximations than simple single-step integration methods, but the latter are easier
both to implement and to understand. Thus, multi-step methods is beyond the scope of the present
work.

2.3 Stiff problems

In general, there is no agreed-upon mathematical definition that applies to all kinds of differential equa-
tions. For ODEs with constant coefficients one may look at the eigenvalues of the resulting Jacobian,
but this alone is not sufficient for arbitrary non-linear differential equations. It seems that a pragmatic
approach is needed, defining a stiff problem on the merits of the symptoms. Such an approach has been
taken by many authors, among them Curtiss & Hirschfelder in their classic paper:
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“Stiff equations are equations where certain implicit methods, in particular BDF, perform
better, usually tremendously better, than explicit ones.”
– (Curtiss and Hirschfelder, 1952)

It is important to note that it is not the particular differential equation that is stiff, even though the term
is commonly used this way. The term stiffness must in the general sense be seen as a practical problem
for certain numerical methods, thus the conditions that apply to the particular differential equation is
important.

“Although it is common to talk about stiff differential equations, an equation per se is not
stiff. A particular initial value problem for that equation may be stiff, in some regions, but
the sizes of these regions depend on the initial values and the error tolerance.”
– (Gear, 1982)

2.4 Implicit-explicit (imex) methods for ODE systems

In many practical applications, large systems of ODEs that contain both stiff and non-stiff elements must
be solved. One approach is to use an explicit method with a short time step, another method is to solve
the whole system using an implicit scheme. As shown in chapter 3, the latter ensures stability, but cost
of solving large systems of equations at each time step – especially if no analytic Jacobian is available –
is computationally costly. Thus, the basic premise of an imex solver is to provide a compromise – the
stiff parts of the system are solved with an implicit solver to ensure stability, while the non-stiff parts
are solved with an explicit solver to reduce computational load (Frank et al., 1997).

For a general ODE system, the idea may be formalized as

ẏ(t) = F (t,y) +G(t,y) (2.6)

where F (t,y) represent the non-stiff part and G(t,y) represent the stiff part. Some combination of
implicit and explicit numerical methods is then employed to solve the system, referred to as an imex
method. Note that in general, it is assumed that a priori knowledge of the system is exploited to
distinguish the stiff and non-stiff part so that the corresponding solver may be employed. In theory,
automatic stiffness detection based on e.g. eigenvalue analysis may be implemented, and this approach
may have some merit for many applications. However, as stated in section 2.3, a general and robust
definition of stiffness is not found in the literature, and there is unlikely to ever be one due to the practical
aspects of the problem. It should also be noted that in general, even though the individual explicit and
implicit are stable, that does not guarantee the stability of the combined imex method (Frank et al.,
1997). Thus, care must be taken when the scheme is constructed.

imex methods have been applied to a rather large variation of problems in the literature – from solving
reaction-diffusion equations with applications in PEM fuel cells (Faragó et al., 2013) to applications in
fast animation of physical objects such as cloth using particle systems (Eberhardt et al., 2000).
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2.5 Alternative strategies for solving stiff problems

Most stiff problems arise from the large difference in time scales of the different trajectories in the
solution. An example that will be further explored in chapter 4 is from reaction kinetics, where it is
not uncommon to have different reactions present in the same reaction system that are several orders of
magnitude apart in terms of reaction rates. Such a problem will naturally be stiff.

In traditional chemical engineering literature, the pseudo steady state assumption (PSSA) is often applied
to such systems, as described in (Fogler, 2005, p. 379). The main idea is to assume that the reactive
intermediates react as soon as they are formed – thus assuming that the net rate of formation is zero.
Such an assumption may greatly simplify the equations in question, eliminating the stiff parts of the
system. In general, the PSSA is a special case of time scale analysis, where the fast time scales may
be assumed to be event dynamic and the slow time scales may be assumed to be constant from the
viewpoint of the dynamic system in question. This is illustrated in fig. 2.1. By restricting the dynamic
window to the scales of interest, the problem of stiffness may be eliminated. Note that this does require
a priori knowledge of the system, but in many practical cases in chemical engineering, such knowledge
is available.

Event Dynamic Constant

t

Small time
scales

Large time
scales

Figure 2.1: Illustration of time scales: the dynamic time scale is flanked to the left by the small time
scales, which may be considered like events. To the right, the dynamic time scale is flanked by the large
time scales, which may be considered constant. The illustration is adapted from (Preisig, 2013).

Mathematically, many such time scale problems may be handled within the framework of singular per-
turbation. By scaling the relevant equations, an inner solution (for the fast time scales) and an outer
solution (for the slow time scales) may be found. The two may be combined to form the approximate
solution to the original problem. Such an approach – where the solution for the fast trajectories are
included in the solution – are particularly useful when the boundary conditions are important. Many
flow systems are of this nature (Preisig, 2013).



Chapter 3

Numerical solution schemes

This chapter contain a short overview of the numerical solution schemes used in the current work; the
explicit Euler scheme, the implicit Euler scheme and the implicit-explicit Euler scheme. A short section
on the Newton-Rapshon method is included, as this is used in the implicit methods to solve the system
of equations that arise in each time step.

3.1 Explicit (ex) Euler scheme

From the general formulation in eq. (2.5) given in chapter 2, the explicit Euler scheme (ex Euler, also
known as “forward Euler”) may be found as

FFE[y
k
,y

k+1
, f(y; Θ)] , f(y

k
; Θ)) (3.1)

where it is evident that only the information about the former time step is used. The iteration scheme
follows readily

y
k+1

= y
k

+ (∆t)f(y
k
; Θ) (3.2)

It is clear from eq. (3.2) that the new state is given directly from knowledge of the old state and the
right-hand side of the ODE system. Thus, the ex Euler method is usually fast, but may be inaccurate.
Also, it suffers from instability for stiff systems, as shown below. Following (Davis, 1984), a simple
single-variable test equation is investigated in order to provide a non-rigorous approach to the concept
of stability

dy

dt
= λy, y(0) = y0 (3.3)

When the ex Euler method of eq. (3.2) is applied to eq. (3.3), the following is obtained

yk+1 = yk + ∆tλyk (3.4)

= yk(1 + ∆tλ) (3.5)

= y0(1 + ∆tλ)k+1 (3.6)

9



10 Chapter 3. Numerical solution schemes

If the situation where an error in an earlier time step – or in the initial value – grows out of bound as
k →∞ is to be avoided, it must be required that |1 + ∆tλ| ≤ 1. Assuming λ to be a real (non-complex)
value and the fact that ∆t > 0, it is clear that for the ex Euler method to be stable, it must be true
that a) λ < 0 and b) that ∆t is small if λ is large. More precisely, as λ → ∞, ∆t → 0. In relation to
the system investigated in chapter 1, it is clear that the (relatively) large value of λ = −100 results in
the ex Euler method must take time steps at least of the order ∆t = 10−2.

3.2 Implicit (im) Euler scheme

Starting again from the general formulation in eq. (2.5) given in chapter 2, the implicit Euler scheme
(im Euler, also known as “backward Euler”) may be found as

FBE[y
k
,y

k+1
, f(y; Θ)] , f(y

k+1
; Θ)) (3.7)

where the state of the next time step is used. The iteration scheme of the im Euler method follows

y
k+1

= y
k

+ (∆t)f(y
k+1

; Θ) (3.8)

Thus, the iterative scheme necessarily involves the solution of a (non-linear system of) equation(s) at
each time step, which adds to the computational cost of the method. While implicit methods in general
are more stable – as shown below – and require fewer time steps for equations with stiff parts, they are
much more demanding than explicit methods. Thus, if the latter are applicable within a reasonable limit
on the time step than must be taken, explicit methods are usually the first try when solving a differential
equation numerically. This is true both for the simple ex Euler method and more sophisticated methods
such as ode45 in matlab – for non-stiff problems, the explicit method will usually be less costly than
the corresponding implicit methods.

In the current work, a Newton-Raphson scheme is implemented to solve the resulting system of differential
equations in each time step. The method is described briefly in section 3.3

The stability of the im Euler method may be investigated similarly to the ex Euler method performed
above. Starting from eq. (3.3) and using the im Euler scheme, the following is obtained

yk+1 = yk + ∆tλyk+1 (3.9)

yk+1(1−∆tλ) = yk (3.10)

yk+1(1−∆tλ)k+1 = y0 (3.11)

yk+1 =
y0

(1−∆tλ)k+1
(3.12)

As long as λ < 0, it is evident that the im Euler method is stable for all ∆t. Due to this property, it is
said to be unconditionally stable. It is now evident why the solution of the example system in chapter 1
using the im Euler method was superior to that of the ex Euler method; using the former, the choice of
∆t is only a matter of accuracy, not stability. For the latter, the choice of ∆t must be made to ensure
stability – disregarding the question of accuracy.
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3.3 Newton-Raphson method

The Newton-Raphson method is an iteration method for finding an approximate solution to the root(s)
of a (system of) non-linear equations. The method may be derived from a Taylor series expansion1 for
a multi-variable function, cut off after the first term

f(x + ∆x) ≈ f(x) + J(x)∆x (3.13)

0 ≈ f(x) + J(x)∆x (3.14)

=⇒ ∆x ≈ −J(x)−1f(x) (3.15)

where J(x)−1 is the inverse of the Jacobi matrix of f(x), the latter being defined as

J(x) =



(
∂f1
∂x1

)
xi6=1

(
∂f1
∂x2

)
xi6=2

· · ·
(

∂f
∂xn

)
xi6=n(

∂f2
∂x1

)
xi6=1

(
∂f2
∂x2

)
xi6=2

· · ·
(

∂f2
∂xn

)
xi6=n

...
...

. . .
...(

∂fn
∂x1

)
xi6=1

(
∂fn
∂x2

)
xi6=2

· · ·
(

∂fn
∂xn

)
xi6=n


(3.16)

Usually, it is preferred to solve the system of linear equations written as

J(xk)(xk+1 − xk) = −f(xk) (3.17)

instead of performing the actual inversion of the Jacobi matrix. The technique is iterative, such that
xk+1 is used as a starting point in the next iteration loop, finding the approximative solution xk+2. The
iteration is continued until the approximative root is sufficiently close to zero, usually governed by a
tolerance that is set a priori by the user of the scheme based on the practical application at hand.

The Newton-Raphson method is a second-order method, which can be seen by analysis of the neglected
terms in the Taylor series (Kreyszig, 2010, p. 804). Due to this fact, the precision of the approximation
is doubled at every iteration sufficiently close to the solution. This means that the number of iterations
needed for the Newton-Raphson method to converge is often quite low. However, the method is quite
sensitive to the initial guess – that is, the first approximation to the solution must be sufficiently close
to the actual solution. In practise, this may prove troublesome depending on what is known about the
solution before the iteration loop is initiated.

1An interesting point is that both the ex Euler method and the im Euler method may similarly be derived by using the
Taylor series as a starting point.
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3.4 Implicit-explicit (imex) Euler scheme

Assuming that the system of ODEs are readily split into an implicit part and an explicit part as described
in chapter 2, the imex Euler scheme may be described as followsyIM

k+1

yEX
k+1

 =

yIM
k

yEX
k

+ ∆t

f(yIM
k+1

,yEX
k+1

; Θ)

f(yEX
k

; Θ)

 (3.18)

where yIM is taken to be the stiff part of y – that is, the part that will be solved implicitly – and yEX is
taken to be the non-stiff part of y – that is, the part that will be solved explicitly. Note that to solve for
yIM
k+1

, it is necessary to first solve for yEX
k+1

, as the latter is used in the solution of the former. Thus, in
the Newton-Raphson iteration to solve for yIM

k+1
, it is assumed that yEX

k+1
is constant during the course

of the iterations. This is an approximation, and may explain why the im method outperforms the imex
method even though the latter – in theory – should provide a computational advantage. This is further
discussed in chapter 5.

The imex method described in eq. (3.18) is implemented in julia as shown in listing 4. Note that
the practical difficulties in terms of implementation of the method – more specifically, the difficulty of
finding a general method for passing the implicit and explicit parts from the top-level in order to split
the calculations into an implicit and explicit part on lower levels – are evident in the code in chapter A,
where a separate Newton-Raphson solver is included for the imex problem. A further generalization
should be possible, but was not implemented for the current work.



Chapter 4

Model

“When the equations represent the behaviour of a system containing a number of fast and
slow reactions, a forward integration of these equations becomes difficult.”
– (Robertson, 1966)

The following example describing the kinetics of an autocatalytic reaction was proposed by (Robertson,
1966), and has become popular in the numerical studies of stiff equation systems (Hairer and Wanner,
1996; Butcher, 2008). For the short time scales, an investigation of the system may be found in (Gobbert,
1996). The original problem as stated by Robertson is

A
0.04−−→ B (slow) (4.1a)

B + B
3·107

−−−→ C + B (very fast) (4.1b)

B + C
1·104

−−−→ A + C (fast) (4.1c)

where it is noted that eq. (4.1b) is several magnitudes larger than eq. (4.1c), which again is several
magnitudes larger than the slow reaction in eq. (4.1a). From this, it is reasonable to predict that the
system of equations will be stiff.1

Three different versions of the Robertson problem are proposed. The first is a scaled version of the
original problem, modified due to the fact that the rather simple methods employed in this work are
expected to have serious trouble with the proposed reaction constants. Thus, these are scaled to reduce
the stiffness but at the same time maintain the original problem qualitatively.

A: y′1 = −0.1y1 +100y2y3 Initial condition: y1(0) = 1

B: y′2 = +0.1y1 −100y2y3 −104y2
2 Initial condition: y2(0) = 0

C: y′3 = +104y2
2 Initial condition: y3(0) = 0

(4.2)

The second version of the problem is the original problem proposed by Robertson, shown in eq. (4.3).

1As in interesting side note, many commercial solvers – both explicit and implicit – will fail to integrate this system
correctly on the very long time scales (e.g. 1× 1010 s) (Hairer and Wanner, 1996, p. 144).

13
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The rate constants are the same as in eq. (4.1).

A: y′1 = −0.04y1 +104y2y3 Initial condition: y1(0) = 1

B: y′2 = +0.04y1 −104y2y3 −3 · 107y2
2 Initial condition: y2(0) = 0

C: y′3 = +3 · 107y2
2 Initial condition: y3(0) = 0

(4.3)

The last system is an expanded version of eq. (4.3), made to promote solution by the imex method
central to this work. The idea behind the reaction scheme shown in eq. (4.4) is to expand the non-stiff
parts of the system, thus promoting the effectiveness of the imex solver. Here, eq. (4.4d) and eq. (4.4e)
represent the two reaction steps that are fast – the rest of the steps are relatively slow in comparison,
and it is assumed that they may be solved efficiently with an explicit method.

As it turns out, this approach does not change the fact that the im method actually outperforms the imex
method even for this system, which is further discussed in chapter 5. The translation from the reaction
scheme into an actual system of equations is similar to the one showed in eq. (4.3), and is omitted. The
resulting system of first-order differential equations is 7× 7, as is evident from eq. (4.4).

A?? 0.03−−→ A? (slow) (4.4a)

A? 0.05−−→ A (slow) (4.4b)

A
0.04−−→ B (slow) (4.4c)

B + B
3·107

−−−→ C + B (very fast) (4.4d)

B + C
1·104

−−−→ A + C (fast) (4.4e)

C
0.05−−→ C? (slow) (4.4f)

C? 0.04−−→ C?? (slow) (4.4g)



Chapter 5

Results and discussion

The results using the three different models described in chapter 4 are shown and discussed below. In
all cases, it is evident that the proposed problem is indeed stiff, and that the ex Euler solver shows the
expected instability unless the time step chosen is very small. For purposed of comparing CPU-time of
the different examples, all calculations were performed using a MacBook Pro with a 2,53 GHz Intel Core
2 Duo processor. It should also be noted that to avoid actual profiling of the julia JIT-compiler, all
functions were compiled once before the performance was measured. Thus, the actual performance is
presumed to be the measured variable.

5.1 Scaled Robertson problem

The results from solving the scaled Robertson problem are below. It is evident that for the given step
length, the ex Euler solver shown in fig. 5.1 is having severe difficulties with predicting the trajectory
of the rapidly changing B component. While the trend predicted is correct, and the instability dies
out over time, the illustration is quite striking. The same problem solved with the im Euler using a
Newton-Raphson iteration scheme to solve the system of non-linear equations as discussed in chapter 3
is shown in fig. 5.2.

15
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Figure 5.1: Solving the Robertson kinetics problem – scaled version – with ex Euler. The stabil-
ity problem when calculating the B-trajectory are evident. Is is also observed minor instability when
calculating the C-trajectory. The step size in this case is ∆t = 0.1 s.
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Figure 5.2: Solving the Robertson kinetics problem – scaled version – with im Euler. The stability
problem when calculating the B-trajectory are not present. The step size in this case is ∆t = 0.1 s.
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5.2 Original Robertson problem

The results from using the same reaction system and the same values for the rate constants as proposed
by (Robertson, 1966) and described in chapter 4 are shown in the figures below, and summarized in
table 5.1. Note that the time step for the ex Euler solver is chosen so that instability is displayed at the
end of the time range, illustrated in fig. 5.4 by zooming in on the instability. The results when solving
the problem using im Euler and imex Euler methods are in good comparison with (Gobbert, 1996), and
are assumed to be correct. The latter solution is not shown, as it is identical to the one obtained by
using the im Euler solver.

Table 5.1: Original Robertson kinetics problem: key performance data using different numerical meth-
ods

Case ∆t Number of time steps CPU-time Total number of N-R iterations

ex Euler (0 s to 40 s) 6× 10−4 s 66667 0.161 s –

im Euler (0 s to 40 s) 1 s 40 0.0239 s 131

imex Euler (0 s to 40 s) 1 s 40 0.122 s 131

ex Euler (0 s to 1000 s) 3× 10−4 s 3333333 7.789 s –

im Euler (0 s to 1000 s) 1 s 1000 0.0612 s 2138

imex Euler (0 s to 1000 s) 1 s 1000 0.0804 s 2123
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Solving the original Robertson problem with an EX Euler solver

Figure 5.3: Solving the Robertson kinetics problem – original version – with ex Euler. The emerging
stability problem when calculating the B-trajectory are evident at the end of the chosen time interval.
The step size in this case is ∆t = 6× 10−4 s.

To further illustrate the difference in performance between the im and ex Euler solvers, the simulation
is run for 1000 s. The computational results are shown in table 5.1. The step size of the ex Euler solver
is still forced to be small in order to avoid stability issues. As the running time of the im solver is largely
governed by the number of N-R iterations necessary – the latter is illustrated in fig. 5.9– the cost of
increasing the simulation interval is not as large for the im solver.

The results from using an imex Euler solver to solve the original Robertson problem are shown in
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Figure 5.4: Solving the Robertson kinetics problem – original version – with ex Euler. The emerging
stability problem when calculating the B-trajectory are evident at the end of the chosen time interval,
and are highlighted in this figure. The step size in this case is ∆t = 6× 10−4 s.
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Figure 5.5: Solving the Robertson kinetics problem – original version – with im Euler. The stability
problem when calculating the B-trajectory is not present. The step size in this case is ∆t = 1 s.

table 5.1. It is assumed – both by trial-and-error and by time scale assumptions – that the trajectory of
B and C should be found using an implicit scheme. In theory, this will save time as a smaller non-linear
system of equations (2× 2 rather than 3× 3) is solved in each time step. The stability issues of the ex
Euler solver are no longer present, thus large time steps are permitted. The concentration of A – the
relatively slow-changing component – is not included in the N-R iterations.

The plot produced by the imex method is identical to the plot produced by the im Euler method, and is
omitted. The performance of this solver seems to be fairly decent. No stability issues are detected, even
when using a fairly large time step of ∆t = 1 s. As will be further discussed, it is noted from table 5.1
that the computational time needed for the imex method is larger than for the im method applied to
the same problem with the same step length.
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Figure 5.6: The number of iterations needed by the Newton-Raphson solver at each time step when
solving the original Robertson kinetic problem using an im Euler and imex Euler solver. Note that while
the maximum number of iterations needed is 15, the average number of iterations needed is close to 3.
It is evident that the number of iterations needed closely follows the sharp B-transient discussed earlier.
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Figure 5.7: Solving the Robertson kinetics problem – original version – with ex Euler for the time
interval 0 s to 1000 s. The emerging stability problem when calculating the B-trajectory are evident at
the end of the chosen time interval. The step size in this case is ∆t = 3× 10−4 s.
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Figure 5.8: Solving the Robertson kinetics problem – original version – with im Euler for the time
interval 0 s to 1000 s. The stability problem when calculating the B-trajectory is not present. The step
size in this case is ∆t = 1 s.
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Figure 5.9: The number of iterations needed by the Newton-Raphson solver at each time step when
solving the original Robertson kinetic problem using im Euler and imex Euler for the time interval 0 s
to 1000 s. Note that while the maximum number of iterations needed is 15, the average number of
iterations needed is around 2. It is evident that the number of iterations needed closely follows the
sharp B-transient discussed earlier, so that for most of the interval, only a few iterations are needed for
convergence.
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5.3 Expanded Robertson kinetic problem

The results from solving the expanded Robertson kinetics problem proposed in chapter 4 are shown
below. The central idea behind the scheme is to expand the non-stiff part of the equation system, thus
making the system more suitable to be solved using an imex Euler method. Note the difference in step
size of the methods. The ex Euler method requires a small step size of 1× 10−3 s to solve the problem,
resulting in 600 000 steps in total. Note that this step size is found by trial-and-error – it is not evident
from the result shown in fig. 5.10, but the step size is just small enough to avoid instability in the result.
The im and imex Euler methods, on the other hand, require only 1000 steps in total (thus, a step length
of 1 s is used). Both of the latter methods are considerably faster than the ex method for this system.
The results are summarized in table 5.2.

Table 5.2: Expanded Robertson kinetics problem: key performance data using different numerical
methods

Case ∆t Number of time steps CPU-time Total number of N-R iterations

ex Euler (0 s to 600 s) 1× 10−3 s 600000 2.160 s –

im Euler (0 s to 600 s) 1 s 600 0.0533 s 1471

imex Euler (0 s to 600 s) 1 s 600 0.143 s 2506

The interesting – and rather surprising – observation that is made from table 5.2 is that the im Euler
method is actually faster than the imex Euler method. This is evident from both the table and from
fig. 5.13, where the number of Newton-Raphson iterations needed at each time step is plotted. The im
Euler solver consistently need fewer steps than the corresponding imex method.

The reason for the latter observation is presumably that for relatively small systems of equations, the
cost of actually solving the system of equations is not high due to highly optimized BLAS-routines in the
julia standard library. Thus, unless the system is large, the added benefit of solving all the equations
implicitly is more pronounced than the trouble of solving the larger system. It is expected that the added
accuracy – thus fewer iterations needed at each time step – when solving the complete system implicitly
is the decisive factor.
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Figure 5.10: Solving the Robertson kinetics problem – expanded version – with an ex Euler for the
time interval 0 s to 600 s. The step size in this case is ∆t = 1× 10−3 s.
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Figure 5.11: Solving the Robertson kinetics problem – expanded version – with an im Euler for the
time interval 0 s to 600 s. The step size in this case is ∆t = 1 s.
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Figure 5.12: Solving the Robertson kinetics problem – expanded version – with an imex Euler for the
time interval 0 s to 600 s. The step size in this case is ∆t = 1 s.
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Figure 5.13: The number of iterations needed by the Newton-Raphson solver for an im and imex Euler
solver, respectively, at each time step when solving the expanded Robertson kinetic problem on the time
interval 0 s to 600 s. Note that the imex method in general need more N-R iterations than the im Euler
solver.



Chapter 6

Conclusion and further work

Three numerical methods – the ex Euler method, im Euler method and the imex Euler method for
solving IVP for systems of ODEs have been implemented in julia. All three methods correctly solve
the proposed models described in chapter 4, adapted from (Robertson, 1966), given the the step size is
sufficiently small for the ex Euler method. In terms of computational time, both the im Euler method and
the imex Euler method outperform the ex Euler method, as is expected due to the step-size restrictions
imposed by the stiff problem.

It is more notable that the im Euler method outperforms the imex Euler method, even for an expanded
equation system specifically proposed to promote the efficient solution using the imex Euler method. The
hypothesis is that for a small system of differential equations – such as 7×7 as for the expanded Robertson
kinetic model – the added cost of computing the whole differential equation system implicitly rather than
using an explicit solver for the non-stiff parts is not very high when using the highly-optimized BLAS
routines in julia. Rather, this saves computational time as a more accurate solution of the resulting
system of equations is permitted, thus resulting in a lower number of total Newton-Raphson iterations
compared to the imex Euler method.

There are many viable options for further work:

• The imex implementation should be made completely general, if possible. Currently, some modi-
fications – i.e. separate Newton-Raphson solver for the imex solver – are needed

• The imex method should be optimized, making the computations more efficient

• The imex method should be tested for larger equations systems, preferably ones with a large
non-stiff component (i.e. many non-stiff equations) and a small stiff component (i.e. a few stiff
equations). It should be investigated whether this promotes the relative performance of the imex
method.
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Appendix A

Julia Code

The main julia source code is included for completeness. The imex method did not lend itself easily
to generalization, so a rather elaborate scheme had to be coded along with a specific Newton-Raphson
solver. Thus, the imex code for the expanded Robertson kinetics problem from chapter 4 is included,
along with its own Newton-Raphson solver.

A.1 ex Euler solver

General explicit (ex) Euler solver implemented in Julia.

Julia code 1: exEuler.jl
1 ################################################################################

2 # Explicit Euler solver (EX)

3 #

4 # Generalized explicit Euler solver (EX) for systems of equations.

5 #

6 # Input:

7 # - f0: [f1(0), f2(0), .... , fn(0)]

8 # - time: [t_start, t_end]

9 # - dt: Size of time step

10 # - df: Function that returns the derivatives of f, given as df(f(t),t)

11 # - k_par: Parameter vector

12 #

13 # Output:

14 # - f: [f1(t_start) f1(t_start+dt) f1(t_start+2dt) ... f1(t_end),

15 # f2(t_start) f2(t_start+dt) f2(t_start+2dt) ... f2(t_end),

16 #

17 # ......

18 #

19 # fn(t_start) fn(t_start+dt) fn(t_start+2dt) ... fn(t_end)]

20 #

21 #

22 # - t: [t_start, t_start+dt, t_start+2dt, ... , t_end]

23 #

26
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24 # Author: Kjetil Sonerud

25 # Updated: 2014-12-04 17:51:22

26 ################################################################################

27

28 function exEuler(f0, time, dt, df, k_par)

29 # Calculate number of time steps based on dt

30 numTimeSteps = int64((time[2] - time[1])/dt)

31 # Initialize time vector

32 tVector = linspace(time[1], time[2], numTimeSteps)

33

34 # Matrix to collect the data

35 ansMatrix = zeros(length(f0), length(tVector))

36

37 # Initial conditions

38 ansMatrix[:,1] = f0

39

40 # Loop

41 for t in 1:length(tVector)-1

42 current_df = df(ansMatrix[:,t], tVector[t], k_par)

43 ansMatrix[:,t+1] = ansMatrix[:,t] + current_df*dt

44 end

45

46 return ansMatrix, tVector

47 end
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A.2 im Euler solver

General implicit (im) Euler solver implemented in Julia.

Julia code 2: imEuler.jl
1 ################################################################################

2 # Implicit Euler solver (IM)

3 #

4 # Generalized implicit Euler solver (IM) for systems of equations, using the

5 # Newton-Raphson method for solving the system of (non)-linear equations in

6 # each time step.

7 #

8 # Input:

9 # - f0: [f1(0), f2(0), .... , fn(0)]

10 # - time: [t_start, t_end]

11 # - dt: Size of time step

12 # - df: Function that returns the derivatives of f, given as df(f(t),t)

13 # - jacobi: Function that returns the second derivatives of f as a matrix,

14 # i.e the Jacobian.

15 #

16 # Output:

17 # - f: [f1(t_start) f1(t_start+dt) f1(t_start+2dt) ... f1(t_end),

18 # f2(t_start) f2(t_start+dt) f2(t_start+2dt) ... f2(t_end),

19 #

20 # ......

21 #

22 # fn(t_start) fn(t_start+dt) fn(t_start+2dt) ... fn(t_end)]

23 #

24 #

25 # - t: [t_start, t_start+dt, t_start+2dt, ... , t_end]

26 #

27 # Author: Kjetil Sonerud

28 # Updated: 2014-12-05 15:13:13

29 ################################################################################

30

31 function imEuler(f0, time, dt, df, jacobi, k_par)

32 # Include Newton-Raphson

33 include("newtonRaphson.jl")

34

35 # Calculate number of time steps based on dt

36 numTimeSteps = int64((time[2] - time[1])/dt)

37 # Initialize time vector

38 tVector = linspace(time[1], time[2], numTimeSteps)

39

40 # Matrix to collect the data

41 ansMatrix = zeros((length(f0)+1), length(tVector))

42

43 # Initial condition

44 ansMatrix[1:end-1,1] = f0

45

46 # Loop

47 for t in 1:length(tVector)-1

48 # Defining the residual function

49 residual(y, y_const, time, dt, df, k_par) = [-y + y_const + dt*df(y,time+dt, k_par)]
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50

51 # Calculating the next time step

52 ansMatrix[:,t+1] = newtonRaphson(residual, jacobi, ansMatrix[1:end-1,t], ansMatrix[1:end-1,t], tVector[t], dt, df, k_par)

53 end

54

55 return ansMatrix, tVector

56 end
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A.3 Newton-Raphson method

Newton-Raphson solver for (non-)linear systems of equations implemented in Julia.

Julia code 3: newtonRaphson.jl
1 #############################################################

2 # Newton-Raphson for solving a system of non-linear equations

3 #

4 # Input:

5 # residual: Function to find F(x) = 0

6 # jacobi: Jacobian matrix of F(x)

7 # y_nplus1_0: Initial guess of y_nplus1-vector

8 # y_n: (constant) y_n-vector

9 # time: Current value of t

10 #

11 # Output:

12 # y_nplus1: y_nplus1-vector that solve F(x)=0

13 #

14 # Author: Kjetil Sonerud

15 # Updated: 2014-12-05 11:50:23

16 #############################################################

17

18 function newtonRaphson(residual, jacobi, y_nplus1_0, y_n, time, dt, df, k_par)

19 # Tolerances

20 delta = 1e-7;

21 epsilon = 1e-7;

22 small = 1e-7;

23

24 # Maximum number of iterations and iteration counter

25 maxiter = 1000;

26 itercounter = 0;

27

28 # Flag; condition for loop termination

29 flag = 0;

30

31 # Initial function value

32 y_nplus1 = y_nplus1_0;

33

34 while flag == 0 && itercounter < maxiter

35 # Increment counter

36 itercounter += 1

37

38 # Calculating current Jacobi

39 jac = jacobi(y_nplus1, time, k_par)

40 res = residual(y_nplus1, y_n, time, dt, df, k_par)

41

42 # Calculating delta_x, assuming that the Jacobi is non-singular

43 delta_y = -jac\res

44

45 # Updating values

46 y_nplus1 += delta_y

47 res = residual(y_nplus1, y_n, time, dt, df, k_par)

48

49 # Calculating relative error
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50 rel_error = 2*norm(delta_y)/(norm(y_nplus1) + small)

51

52 # Check for convergence

53 if rel_error < delta && maximum(abs(res)) < epsilon

54 if flag != 1

55 flag = 2

56 end

57 end

58 end

59 return [y_nplus1, itercounter]

60 end
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A.4 imex method for the expanded Robertson problem

imex solver for the expanded Robertson kinetics problem presented in chapter 4 implemented in Julia.

Julia code 4: imexEuler_expandedRobertson.jl
1 ################################################################################

2 # Implicit-explicit Euler solver (IMEX) for expanded Robertson problem

3 #

4 # Specialized implicit-explicit Euler solver (IMEX) for systems of differential

5 # equations arising from the expanded Robertson kinetics problem, using the

6 # Newton-Raphson method for solving the system of (non)-linear equations in each

7 # time step.

8 #

9 # Input:

10 # - f0: [f1(0), f2(0), .... , fn(0)]

11 # - time: [t_start, t_end]

12 # - dt: Size of time step

13 # - df: Function that returns the derivatives of f, given as df(f(t),t)

14 # - jacobi: Function that returns the second derivatives of f as a matrix,

15 # i.e the Jacobian.

16 #

17 # Output:

18 # - f: [f1(t_start) f1(t_start+dt) f1(t_start+2dt) ... f1(t_end),

19 # f2(t_start) f2(t_start+dt) f2(t_start+2dt) ... f2(t_end),

20 #

21 # ......

22 #

23 # fn(t_start) fn(t_start+dt) fn(t_start+2dt) ... fn(t_end)]

24 #

25 #

26 # - t: [t_start, t_start+dt, t_start+2dt, ... , t_end]

27 #

28 # Author: Kjetil Sonerud

29 # Updated: 2014-12-09 02:37:23

30 ################################################################################

31

32 function imexEuler_expandedRobertson(f0, residual, time, dt, df, jacobi, k_par, isImplicit)

33 # Include Newton-Raphson

34 include("newtonRaphson_expandedRobertson.jl")

35

36 # Calculate number of time steps based on dt

37 numTimeSteps = int64((time[2] - time[1])/dt)

38 # Initialize time vector

39 tVector = linspace(time[1], time[2], numTimeSteps)

40

41 #number of implicit equations

42 nrImplicit = countImplicit(isImplicit)

43

44 # Matrix to collect the data

45 implicit = zeros(nrImplicit, length(tVector))

46 explicit = zeros(length(isImplicit)-nrImplicit, length(tVector))

47 endVec = zeros(1, length(tVector))

48

49 # Initial condition
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50 i = 1; e = 1

51 for row in 1:length(isImplicit)

52 if(isImplicit[row])

53 implicit[i,:] = f0[row]

54 i+=1;

55 else

56 explicit[e,:] = f0[row]

57 e+=1;

58 end

59 end

60

61 # Loop

62 for t in 1:length(tVector)-1

63

64 # Explicit calculation

65 explicit[:,t+1] = explicit[:,t] + returnExplicit(dt*df(

66 createFullMatrix(explicit[:,t], implicit[:,t], isImplicit), tVector[t], k_par),

67 isImplicit)

68

69

70 # Implicit calculation

71 ImplicitMatrix, endVec[1,t+1] = newtonRaphson_expandedRobertson(

72 residual, jacobi, createFullMatrix(explicit[:,t+1], implicit[:,t], isImplicit),

73 createFullMatrix(explicit[:,t+1], implicit[:,t], isImplicit),

74 tVector[t], dt, df, k_par, isImplicit)

75

76 implicit[:,t+1] = returnImplicit(ImplicitMatrix, isImplicit)

77 end

78 # Construct result

79 result = [createFullMatrixFinal(explicit, implicit, isImplicit, tVector), endVec]

80 return result, tVector

81 end

82

83 ########################################

84 # Auxiliary functions

85 ########################################

86 function createFullMatrix(explicit_t, implicit_t, isImplicit)

87 i = 1; e = 1

88 tempAnsMatrix = zeros((length(f0)))

89 for row in 1:length(isImplicit)

90 if(isImplicit[row])

91 tempAnsMatrix[row]=implicit_t[i]

92 i+=1;

93 else

94 tempAnsMatrix[row]=explicit_t[e]

95 e+=1;

96 end

97 end

98 return tempAnsMatrix

99 end

100

101 function createFullMatrixFinal(explicit_t, implicit_t, isImplicit, tVector)

102 i = 1; e = 1

103 tempAnsMatrix = zeros((length(f0)), length(tVector))

104 for row in 1:length(isImplicit)



34 Appendix A. Julia Code

105 if(isImplicit[row])

106 tempAnsMatrix[row, :]=implicit_t[i, :]

107 i+=1;

108 else

109 tempAnsMatrix[row,:]=explicit_t[e,:]

110 e+=1;

111 end

112 end

113 return tempAnsMatrix

114 end

115

116 function returnExplicit(fullMatrix, isImplicit)

117 e=1; nrImplicit = countImplicit(isImplicit)

118 tempExplicit = zeros(length(isImplicit)-nrImplicit, 1)

119 for row in 1:length(isImplicit)

120 if(!isImplicit[row])

121 tempExplicit[e] = fullMatrix[row]

122 e+=1;

123 end

124 end

125 return tempExplicit

126 end

127

128 function returnImplicit(fullMatrix, isImplicit)

129 i=1; nrImplicit = countImplicit(isImplicit)

130 tempImplicit = zeros(nrImplicit)

131 for row in 1:length(isImplicit)

132 if(isImplicit[row])

133 tempImplicit[i] = fullMatrix[row]

134 i+=1;

135 end

136 end

137 return tempImplicit

138 end

139

140 function countImplicit(isImplicit)

141 nrImplicit = 0;

142 for index in 1:length(isImplicit)

143 if(isImplicit[index])

144 nrImplicit+=1;

145 end

146 end

147 return nrImplicit;

148 end
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A.5 Newton-Raphson method for the imex method

Specialized Newton-Raphson solver for (non-)linear systems of equations to solved with the imex solver
for the expanded Robertson problem implemented in Julia.

Julia code 5: newtonRaphson_expandedRobertson.jl
1 #############################################################

2 # Newton-Raphson for solving a system of non-linear equations,

3 # used in the IMEX method for the expanded Robertson problem

4 #

5 # Input:

6 # residual: Function to find F(x) = 0

7 # jacobi: Jacobian matrix of F(x)

8 # y_nplus1_0: Initial guess of y_nplus1-vector

9 # y_n: (constant) y_n-vector

10 # time: Current value of t

11 #

12 # Output:

13 # y_nplus1: y_nplus1-vector that solve F(x)=0

14 #

15 # Author: Kjetil Sonerud

16 # Updated: 2014-12-09 02:42:09

17 #############################################################

18

19 function newtonRaphson_expandedRobertson(residual, jacobi, y_nplus1_0, y_n, time, dt, df, k_par, isImplicit)

20 # Tolerances

21 delta = 1e-7;

22 epsilon = 1e-7;

23 small = 1e-7;

24

25 # Maximum number of iterations and iteration counter

26 maxiter = 1000;

27 itercounter = 0;

28

29 # Flag; condition for loop termination

30 flag = 0;

31

32 # Initial function value

33 y_nplus1 = y_nplus1_0;

34

35 function addYnplus1(delta)

36 d = 1;

37 addOnY = zeros(length(y_nplus1_0))

38 for row in 1:length(isImplicit)

39 if(isImplicit[row])

40 addOnY[row]=delta[d]

41 d+=1

42 end

43 end

44 return addOnY

45 end

46

47 while flag == 0 && itercounter < maxiter

48 # Increment counter
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49 itercounter += 1

50

51 # Calculating current Jacobi

52 jac = jacobi(y_nplus1, time, k_par)

53 res = residual(y_nplus1, y_n, time, dt, df, k_par)

54

55 # Calculating delta_y, assuming that the Jacobi is non-singular

56 delta_y = -jac\res

57

58 # Updating values

59 y_nplus1 += addYnplus1(delta_y)

60 res = residual(y_nplus1, y_n, time, dt, df, k_par)

61

62 # Calculating relative error

63 rel_error = 2*norm(delta_y)/(norm(y_nplus1) + small)

64

65 # Check for convergence

66 if rel_error < delta && maximum(abs(res)) < epsilon

67 if flag != 1

68 flag = 2

69 end

70 end

71 end

72 return y_nplus1, itercounter

73 end
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A.6 Run model cases

Script to run the different cases for the Robertson kinetics problem presented in chapter 4. The relevant
data is logged and saved to file for analysis and plotting.

Julia code 6: runAllCases.jl
1 ################################################################################

2 # Run all

3 #

4 # Run all cases using EX, IM and IMEX methods for the Robertson problem; both

5 # scaled and original problem

6 #

7 # Author: Kjetil Sonerud

8 # Updated: 2014-12-07 10:34:35

9 ################################################################################

10

11 workspace()

12

13 f_handle = open("results/data/log_runAllCases_"*string(strftime("%c", time()))*".txt", "w")

14 # f_handle = open("results/data/myTestLog.txt", "w")

15

16 # Which cases to run?

17 runCase1 = true

18 runCase2 = true

19 runCase3 = true

20 runCase4 = true

21

22

23 ########################################

24 # Case 1: scaled Robertson problem

25 # 0-40 sec

26 ########################################

27 if runCase1 == true

28 # Derivatives, Jacobian and parameters

29 k_par = [0.04, 3e3, 1e1]

30 df(f,t,k_par) = [-k_par[1]*f[1] + k_par[3]*f[2]*f[3], +k_par[1]*f[1]-k_par[3]*f[2]*f[3]-k_par[2]*f[2]*f[2], +k_par[2]*f[2]*f[2]]

31 f0 = [1,0,0]

32 timespan = [0,10]

33 dt = 0.1

34 jacobi(f,t,k_par) = -eye(length(f0)) + [-k_par[1] k_par[3]*f[3] k_par[3]*f[2]; k_par[1] (-2*k_par[2]*f[2] - k_par[3]*f[3]) -k_par[3]*f[2]; 0 2*k_par[2]*f[2] 0]

35

36 ########################################

37 # Run EX Euler

38 ########################################

39 numPoints = 200

40 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

41

42 println("EX Euler")

43 include("exEuler.jl")

44

45 exEuler(f0, timespan, dt, df, k_par)

46

47 tic();

48 x1,t1 = exEuler(f0, timespan, dt, df, k_par)
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49 cputime = toc();

50

51 # Not including all data points for plotting

52 x1_plot = x1[:,1:gap:end]

53 t1_plot = t1[1:gap:end]

54

55 # Save results

56 results1 = ["t" "y1" "y2" "y3"; t1_plot x1_plot’]

57 writedlm("results/data/exEulerData_scaled_robertson.dat", results1, ’ ’)

58

59 # Write to log file

60 write(f_handle, "EX Euler scaled Robertson: \n")

61 write(f_handle, "k_par: "*string(k_par)*"\n")

62 write(f_handle, "Total time steps: "*string(length(t1))*"\n")

63 write(f_handle, "dt: "*string(dt)*"\n")

64 write(f_handle, "CPU-time: "*string(cputime)*"\n\n")

65

66 ########################################

67 # Run IM Euler

68 ########################################

69 numPoints = 200

70 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

71

72 println("IM Euler")

73 include("imEuler.jl")

74

75 imEuler(f0, timespan, dt, df, jacobi, k_par)

76

77 tic();

78 x2,t2 = imEuler(f0, timespan, dt, df, jacobi, k_par)

79 cputime = toc();

80

81 # Not including all data points for plotting

82 x2_plot = x2[:,1:1e0:end]

83 t2_plot = t2[1:1e0:end]

84

85 # Save results

86 results2 = ["t" "y1" "y2" "y3" "iterations"; t2_plot x2_plot’]

87 writedlm("results/data/imEulerData_scaled_robertson.dat", results2, ’ ’)

88

89 # Write to log file

90 write(f_handle, "IM Euler scaled Robertson: \n")

91 write(f_handle, "k_par: "*string(k_par)*"\n")

92 write(f_handle, "Total time steps: "*string(length(t2))*"\n")

93 write(f_handle, "dt: "*string(dt)*"\n")

94 write(f_handle, "CPU-time: "*string(cputime)*"\n")

95 write(f_handle, "Total # iterations: "*string(sum(x2[end,:]))*"\n")

96 write(f_handle, "Mean # iterations: "*string(sum(x2[end,:])/length(x2[end,:]))*"\n")

97 write(f_handle, "Maximum # iterations: "*string(maximum(x2[end,:]))*"\n\n")

98 end

99

100 ########################################

101 # Case 2: original Robertson problem

102 # 0-40 sec

103 ########################################
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104 if runCase2 == true

105 # Derivatives, Jacobian and parameters

106 k_par = [0.04, 3e7, 1e4]

107 df(f,t,k_par) = [-k_par[1]*f[1] + k_par[3]*f[2]*f[3], +k_par[1]*f[1]-k_par[3]*f[2]*f[3]-k_par[2]*f[2]*f[2], +k_par[2]*f[2]*f[2]]

108 f0 = [1,0,0]

109 timespan = [0,40]

110 jacobi(f,t,k_par) = -eye(length(f0)) + [-k_par[1] k_par[3]*f[3] k_par[3]*f[2]; k_par[1] (-2*k_par[2]*f[2] - k_par[3]*f[3]) -k_par[3]*f[2]; 0 2*k_par[2]*f[2] 0]

111

112 ########################################

113 # Run EX Euler

114 ########################################

115 # Define time step

116 dt = 6e-4

117

118 numPoints = 1000

119 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

120

121 println("EX Euler")

122 include("exEuler.jl")

123

124 exEuler(f0, timespan, dt, df, k_par)

125

126 tic();

127 x1,t1 = exEuler(f0, timespan, dt, df, k_par)

128 cputime = toc();

129

130 # Not including all data points for plotting

131 x1_plot = x1[:,1:gap:end]

132 t1_plot = t1[1:gap:end]

133

134 # Save results

135 results1 = ["t" "y1" "y2" "y3"; t1_plot x1_plot’]

136 writedlm("results/data/exEulerData_original_robertson.dat", results1, ’ ’)

137

138 # Write to log file

139 write(f_handle, "EX Euler original Robertson: \n")

140 write(f_handle, "k_par: "*string(k_par)*"\n")

141 write(f_handle, "Total time steps: "*string(length(t1))*"\n")

142 write(f_handle, "dt: "*string(dt)*"\n")

143 write(f_handle, "CPU-time: "*string(cputime)*"\n\n")

144

145 ########################################

146 # Run IM Euler

147 ########################################

148 # Define time step

149 dt = 1

150

151 numPoints = 500

152 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

153

154 println("IM Euler")

155 include("imEuler.jl")

156

157 imEuler(f0, timespan, dt, df, jacobi, k_par)

158
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159 tic();

160 x2,t2 = imEuler(f0, timespan, dt, df, jacobi, k_par)

161 cputime = toc();

162

163 # Not including all data points for plotting

164 x2_plot = x2[:,1:gap:end]

165 t2_plot = t2[1:gap:end]

166

167 # Save results

168 results2 = ["t" "y1" "y2" "y3" "iterations"; t2_plot x2_plot’]

169 writedlm("results/data/imEulerData_original_robertson.dat", results2, ’ ’)

170

171 # Write to log file

172 write(f_handle, "IM Euler original Robertson: \n")

173 write(f_handle, "k_par: "*string(k_par)*"\n")

174 write(f_handle, "Total time steps: "*string(length(t2))*"\n")

175 write(f_handle, "dt: "*string(dt)*"\n")

176 write(f_handle, "CPU-time: "*string(cputime)*"\n")

177 write(f_handle, "Total # iterations: "*string(sum(x2[end,:]))*"\n")

178 write(f_handle, "Mean # iterations: "*string(sum(x2[end,:])/length(x2[end,:]))*"\n")

179 write(f_handle, "Maximum # iterations: "*string(maximum(x2[end,:]))*"\n\n")

180

181 ########################################

182 # Run IMEX Euler

183 ########################################

184 # Define time step

185 dt = 1

186

187 # Redefine Jacobian to suit IMEX

188 jacobi(f,t, k_par) = -eye(length(f0)-1) + [(-2*k_par[2]*f[2] - k_par[3]*f[3]) -k_par[3]*f[2]; 2*k_par[2]*f[2] 0]

189

190 numPoints = 500

191 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

192

193 println("IMEX Euler")

194 include("imexEuler_robertson.jl")

195

196 imexEuler_robertson(f0, timespan, dt, df, jacobi, k_par)

197

198 tic();

199 x3,t3 = imexEuler_robertson(f0, timespan, dt, df, jacobi, k_par)

200 cputime = toc();

201

202 # Not including all data points for plotting

203 x3_plot = x3[:,1:gap:end]

204 t3_plot = t3[1:gap:end]

205

206 # Save results

207 results2 = ["t" "y1" "y2" "y3" "iterations"; t3_plot x3_plot’]

208 writedlm("results/data/imexEulerData_original_robertson.dat", results2, ’ ’)

209

210 # Write to log file

211 write(f_handle, "IMEX Euler original Robertson: \n")

212 write(f_handle, "k_par: "*string(k_par)*"\n")

213 write(f_handle, "Total time steps: "*string(length(t3))*"\n")
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214 write(f_handle, "dt: "*string(dt)*"\n")

215 write(f_handle, "CPU-time: "*string(cputime)*"\n")

216 write(f_handle, "Total # iterations: "*string(sum(x3[end,:]))*"\n")

217 write(f_handle, "Mean # iterations: "*string(sum(x3[end,:])/length(x3[end,:]))*"\n")

218 write(f_handle, "Maximum # iterations: "*string(maximum(x3[end,:]))*"\n\n")

219 end

220

221 ########################################

222 # Case 3: original Robertson problem

223 # 0-1000 sec

224 ########################################

225 if runCase3 == true

226 # Derivatives, Jacobian and parameters

227 k_par = [0.04, 3e7, 1e4]

228 df(f,t,k_par) = [-k_par[1]*f[1] + k_par[3]*f[2]*f[3], +k_par[1]*f[1]-k_par[3]*f[2]*f[3]-k_par[2]*f[2]*f[2], +k_par[2]*f[2]*f[2]]

229 f0 = [1,0,0]

230 timespan = [0,1000]

231 jacobi(f,t,k_par) = -eye(length(f0)) + [-k_par[1] k_par[3]*f[3] k_par[3]*f[2]; k_par[1] (-2*k_par[2]*f[2] - k_par[3]*f[3]) -k_par[3]*f[2]; 0 2*k_par[2]*f[2] 0]

232

233 ########################################

234 # Run EX Euler

235 ########################################

236 # Define time step

237 dt = 3e-4

238

239 numPoints = 1000

240 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

241

242 println("EX Euler")

243 include("exEuler.jl")

244

245 exEuler(f0, timespan, dt, df, k_par)

246

247 tic();

248 x1,t1 = exEuler(f0, timespan, dt, df, k_par)

249 cputime = toc();

250

251 # Not including all data points for plotting

252 x1_plot = x1[:,1:gap:end]

253 t1_plot = t1[1:gap:end]

254

255 # Save results

256 results1 = ["t" "y1" "y2" "y3"; t1_plot x1_plot’]

257 writedlm("results/data/exEulerData_original_1000s_robertson.dat", results1, ’ ’)

258

259 # Write to log file

260 write(f_handle, "EX Euler original 1000s Robertson: \n")

261 write(f_handle, "k_par: "*string(k_par)*"\n")

262 write(f_handle, "Total time steps: "*string(length(t1))*"\n")

263 write(f_handle, "dt: "*string(dt)*"\n")

264 write(f_handle, "CPU-time: "*string(cputime)*"\n\n")

265

266 ########################################

267 # Run IM Euler

268 ########################################
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269 # Define time step

270 dt = 1

271

272 numPoints = 1000

273 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

274

275 println("IM Euler")

276 include("imEuler.jl")

277

278 imEuler(f0, timespan, dt, df, jacobi, k_par)

279

280 tic();

281 x2,t2 = imEuler(f0, timespan, dt, df, jacobi, k_par)

282 cputime = toc();

283

284 # Not including all data points for plotting

285 x2_plot = x2[:,1:gap:end]

286 t2_plot = t2[1:gap:end]

287

288 # Save results

289 results2 = ["t" "y1" "y2" "y3" "iterations"; t2_plot x2_plot’]

290 writedlm("results/data/imEulerData_original_1000s_robertson.dat", results2, ’ ’)

291

292 # Write to log file

293 write(f_handle, "IM Euler original 1000s Robertson: \n")

294 write(f_handle, "k_par: "*string(k_par)*"\n")

295 write(f_handle, "Total time steps: "*string(length(t2))*"\n")

296 write(f_handle, "dt: "*string(dt)*"\n")

297 write(f_handle, "CPU-time: "*string(cputime)*"\n")

298 write(f_handle, "Total # iterations: "*string(sum(x2[end,:]))*"\n")

299 write(f_handle, "Mean # iterations: "*string(sum(x2[end,:])/length(x2[end,:]))*"\n")

300 write(f_handle, "Maximum # iterations: "*string(maximum(x2[end,:]))*"\n\n")

301

302 ########################################

303 # Run IMEX Euler

304 ########################################

305 # Define time step

306 dt = 1

307

308 # Redefine Jacobian to suit IMEX

309 jacobi(f,t, k_par) = -eye(length(f0)-1) + [(-2*k_par[2]*f[2] - k_par[3]*f[3]) -k_par[3]*f[2]; 2*k_par[2]*f[2] 0]

310

311 numPoints = 1000

312 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

313

314 println("IMEX Euler")

315 include("imexEuler_robertson.jl")

316

317 imexEuler_robertson(f0, timespan, dt, df, jacobi, k_par)

318

319 tic();

320 x3,t3 = imexEuler_robertson(f0, timespan, dt, df, jacobi, k_par)

321 cputime = toc();

322

323 # Not including all data points for plotting
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324 x3_plot = x3[:,1:gap:end]

325 t3_plot = t3[1:gap:end]

326

327 # Save results

328 results2 = ["t" "y1" "y2" "y3" "iterations"; t3_plot x3_plot’]

329 writedlm("results/data/imexEulerData_original_1000s_robertson.dat", results2, ’ ’)

330

331 # Write to log file

332 write(f_handle, "IMEX Euler original 1000s Robertson: \n")

333 write(f_handle, "k_par: "*string(k_par)*"\n")

334 write(f_handle, "Total time steps: "*string(length(t3))*"\n")

335 write(f_handle, "dt: "*string(dt)*"\n")

336 write(f_handle, "CPU-time: "*string(cputime)*"\n")

337 write(f_handle, "Total # iterations: "*string(sum(x3[end,:]))*"\n")

338 write(f_handle, "Mean # iterations: "*string(sum(x3[end,:])/length(x3[end,:]))*"\n")

339 write(f_handle, "Maximum # iterations: "*string(maximum(x3[end,:]))*"\n\n")

340 end

341

342 ########################################

343 # Case 4: expanded Robertson problem

344 # 0-100 sec

345 ########################################

346 if runCase4 == true

347 # Derivatives, Jacobian and parameters

348 k_par = [0.03, 0.05, 0.04, 3e7, 1e4, 0.05, 0.04]

349 df(f,t,k_par) = [

350 -k_par[1]*f[1],

351 +k_par[1]*f[1] - k_par[2]*f[2],

352 +k_par[2]*f[2] - k_par[3]*f[3] + k_par[5]*f[4]*f[5],

353 +k_par[3]*f[3] - k_par[5]*f[4]*f[5] - k_par[4]*f[4]*f[4],

354 +k_par[4]*f[4]*f[4] - k_par[6]*f[5],

355 +k_par[6]*f[5] - k_par[7]*f[6],

356 +k_par[7]*f[6]

357 ]

358 f0 = [1,0,0,0,0,0,0]

359 timespan = [0,600]

360 jacobi(f,t,k_par) = (

361 -eye(length(f0))

362 + [

363 -k_par[1] 0 0 0 0 0 0;

364 +k_par[1] -k_par[2] 0 0 0 0 0;

365 0 +k_par[2] -k_par[3] k_par[5]*f[5] k_par[5]*f[4] 0 0;

366 0 0 k_par[3] (-2*k_par[4]*f[4] - k_par[5]*f[5]) -k_par[5]*f[4] 0 0;

367 0 0 0 2*k_par[4]*f[4] -k_par[6] 0 0;

368 0 0 0 0 k_par[6] -k_par[7] 0;

369 0 0 0 0 0 k_par[7] 0;

370 ]

371 )

372 ########################################

373 # Run EX Euler

374 ########################################

375 # Define time step

376 dt = 1e-3

377

378 numPoints = 1000
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379 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

380

381 println("EX Euler")

382 include("exEuler.jl")

383

384 exEuler(f0, timespan, dt, df, k_par)

385

386 tic();

387 x1,t1 = exEuler(f0, timespan, dt, df, k_par)

388 cputime = toc();

389

390 # Not including all data points for plotting

391 x1_plot = x1[:,1:gap:end]

392 t1_plot = t1[1:gap:end]

393

394 # Save results

395 results1 = ["t" "y1" "y2" "y3" "y4" "y5" "y6" "y7"; t1_plot x1_plot’]

396 writedlm("results/data/exEulerData_expanded_robertson.dat", results1, ’ ’)

397

398 # Write to log file

399 write(f_handle, "EX Euler expanded Robertson: \n")

400 write(f_handle, "k_par: "*string(k_par)*"\n")

401 write(f_handle, "Total time steps: "*string(length(t1))*"\n")

402 write(f_handle, "dt: "*string(dt)*"\n")

403 write(f_handle, "CPU-time: "*string(cputime)*"\n\n")

404

405 ########################################

406 # Run IM Euler

407 ########################################

408 # Define time step

409 dt = 1

410

411 numPoints = 1000

412 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

413

414 println("IM Euler")

415 include("imEuler.jl")

416

417 imEuler(f0, timespan, dt, df, jacobi, k_par)

418

419 tic();

420 x2,t2 = imEuler(f0, timespan, dt, df, jacobi, k_par)

421 cputime = toc();

422

423 # Not including all data points for plotting

424 x2_plot = x2[:,1:gap:end]

425 t2_plot = t2[1:gap:end]

426

427 # Save results

428 results2 = ["t" "y1" "y2" "y3" "y4" "y5" "y6" "y7" "iterations"; t2_plot x2_plot’]

429 writedlm("results/data/imEulerData_expanded_robertson.dat", results2, ’ ’)

430

431 # Write to log file

432 write(f_handle, "IM Euler expanded Robertson: \n")

433 write(f_handle, "k_par: "*string(k_par)*"\n")
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434 write(f_handle, "Total time steps: "*string(length(t2))*"\n")

435 write(f_handle, "dt: "*string(dt)*"\n")

436 write(f_handle, "CPU-time: "*string(cputime)*"\n")

437 write(f_handle, "Total # iterations: "*string(sum(x2[end,:]))*"\n")

438 write(f_handle, "Mean # iterations: "*string(sum(x2[end,:])/length(x2[end,:]))*"\n")

439 write(f_handle, "Maximum # iterations: "*string(maximum(x2[end,:]))*"\n\n")

440

441 ########################################

442 # Run IMEX Euler

443 ########################################

444 # Define time step

445 dt = 1

446

447 # Redefine Jacobian to suit IMEX

448 jacobi(f,t, k_par) = -eye(2) + [(-2*k_par[4]*f[4] - k_par[5]*f[5]) -k_par[5]*f[4]; 2*k_par[4]*f[4] 0]

449

450 numPoints = 1000

451 gap = ceil(((timespan[2] - timespan[1])/dt)/numPoints)

452

453 println("IMEX Euler for the expanded Robertson problem")

454 include("imexEuler_expandedRobertson.jl")

455

456 # Define which equations are to be solved implicit

457 isImplicit = [false false false true true false false]

458

459 # Defining the residual function used in the N-R function

460 residual(y, y_const, time, dt, df, k_par) = [-y[4:5] + y_const[4:5] + dt*df(y,time+dt, k_par)[4:5]]

461

462 imexEuler_expandedRobertson(f0, residual, timespan, dt, df, jacobi, k_par, isImplicit)

463

464 tic();

465 x3,t3 = imexEuler_expandedRobertson(f0, residual, timespan, dt, df, jacobi, k_par, isImplicit)

466 cputime = toc();

467

468 # Not including all data points for plotting

469 x3_plot = x3[:,1:gap:end]

470 t3_plot = t3[1:gap:end]

471

472 # Save results

473 results3 = ["t" "y1" "y2" "y3" "y4" "y5" "y6" "y7" "iterations"; t3_plot x3_plot’]

474 writedlm("results/data/imexEulerData_expanded_robertson.dat", results3, ’ ’)

475

476 # Write to log file

477 write(f_handle, "IMEX Euler expanded Robertson: \n")

478 write(f_handle, "k_par: "*string(k_par)*"\n")

479 write(f_handle, "Total time steps: "*string(length(t3))*"\n")

480 write(f_handle, "dt: "*string(dt)*"\n")

481 write(f_handle, "CPU-time: "*string(cputime)*"\n")

482 write(f_handle, "Total # iterations: "*string(sum(x3[end,:]))*"\n")

483 write(f_handle, "Mean # iterations: "*string(sum(x3[end,:])/length(x3[end,:]))*"\n")

484 write(f_handle, "Maximum # iterations: "*string(maximum(x3[end,:]))*"\n\n")

485 end

486

487 ########################################

488 # Close log file
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489 ########################################

490 close(f_handle)

491

492 println("File closed!")
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