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1 INTRODUCTION

1 Introduction

This report is the result of the project in the course ’Advanced Simulation’. It investigates the possibility of
calculating derivatives of functions using complex differentiation. The report will give a brief introduction to
the theoretical background before presenting the algorithm. A large part of the report consists of examples
to illustrate the described algorithm and theory. Though it is not necessary to read this part to understand
the theory, it is recommended to do so to understand how it works in practice. Finally, a bicomplex class
was written in MATLAB and can be found in the appendix.
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2 MOTIVATION

2 Motivation

One of the most commonly used methods to numerically estimate the differential of a continuous function are
so-called finite difference methods. These methods are based on a truncated version of the Taylor expansion
series around a point. Consider a holomorphic function f , i.e. f is infinitely differentiable. The Taylor series
for f around the point x0 is then

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 +

f (3)(x0)

6
(x− x0)3 + ... (1)

=

∞∑
i=0

f (i)

i!
(x− x0)i (2)

Inserting x = x0 + h yields

f(x) = f(x0) + hf ′(x0) + h2
f ′′(x0)

2
+ h3

f (3)(x0)

6
+ ... (3)

=

∞∑
i=0

hi
f (i)

i!
(4)

Assuming that h is small such that all higher order terms can be neglected, the equation can be rearranged
to yield the forward difference

f ′(x0) =
f(x0 + h)− f(x0)

h
+O(h) (5)

Where h is the step size and O is the truncation error, which stems from the truncation of the Taylor series
after the first term. The accuracy of the method can be improved by choosing a central difference scheme.

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
+O(h2) (6)

It seems like an arbitrary high accuracy can be achieved by choosing a sufficiently small h. Indeed, the
definition of the derivative is closely related to the forward difference. Letting h go to zero, one obtains the
definition of the derivative

f ′(x)=̂ lim
x→0

f(x+ h)− f(x)

h
(7)

However, rounding error is introduced when using floating point arithmetic. In order to understand why this
occurs, one must understand how numbers are stored in computers. In most computers today, numbers are
stored as double-precision floating-point variables, meaning that each number is represented by 8 bytes or 64
bits of memory. Out of those 64 bits, 1 is used to store the sign (+ or -), 11 are used to store the exponent
and the remaining 52 give the significand precision. Due to special encoding, one additional bit is available
for the significand precision. 53 bits of storage in binary equal to 53log10(2) ≈ 15.96 unique characters in
decimal.

Figure 1: Storage of numbers as 64-bit floating-point variables. Illustration taken from Wikipedia Com-
mons: http://upload.wikimedia.org/wikipedia/commons/a/a9/IEEE_754_Double_Floating_Point_

Format.svg
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2 MOTIVATION

In other words, two numbers which are identical in the first 16 significant digits will be stored as the same
value inside the computer memory. Subsequent subtraction will yield zero as the result. The smallest dis-
tinguishable difference between two numbers is called the machine precision ε, and typically has between 15
and 17 significant digits after the exponent.

This rounding error increases as h approaches ε, which is why the selection of the step size is subject
to limitations when using finite difference methods to estimate differentials. The finite difference methods
are said to be ill-conditioned.

This means that a balance between the rounding error and the truncation error has to be found in or-
der to get the highest accuracy. The optimal value for h depends on the nature of f , but in general a value
close to h = x ·

√
ε gives a decent initial estimate.

2.1 Alternatives to finite difference methods

Finite difference methods are often used because they are relatively easy to implement. But due to their
ill-conditioned nature, alternative methods have to be used when high precision is desired.

One common approach is to use automatic differentiation (AD). AD exploits the fact that all functions
can be expressed as a combination of basic mathematical operations such as subtraction, addition, multi-
plication etc. By storing the derivative of each variable alongside its value, one can automatically calculate
the derivatives of each following variable by repeatedly applying the chain rule to these basic mathematical
operations. The disadvantage of this method is that is computationally intensive in terms of computation
speed and storage. Each additional higher-order derivative requires the computation and storage of an ad-
ditional value. Many AD tools are limited to first or second-order derivatives.

Another approach is to calculate the exact derivatives using symbolic calculations. Symbolic differentia-
tion is very similar to manual differentiation, using a set of rules to obtain the derivative. Mathematica and
Maple are examples of commercial software which use symbolic mathematics. The major drawback of this
method is the high computation cost.

Complex differentiation is another alternative. It is not widely used due to various reasons, mainly the
availability of good AD tools. However, some authors claim that complex differentiation has several advan-
tages over AD [2]. The Cauchy integral method is already used to calculate higher-order derivatives in some
communities. The Cauchy integral method will be briefly introduced in Section 3.2. The main focus of this
report is the (multi)complex step method.
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3 COMPLEX DIFFERENTIATION

3 Complex differentiation

3.1 First order derivatives

Squire and Trapp first described an alternative method for calculating first-order derivatives without round-
off error in 1998[6]. Their method is reminiscent of the the finite different method, but is extended to the
complex plane. By stepping in the complex plane instead of in the real plane, round-off error can be elimi-
nated.

Assume that f is a holomorphic function, i.e. is infinitely differentiable. The Taylor series of f evaluated at
the complex point x0 + ih is then:

f(x0 + ih) = f(x0) + ihf ′(x0)− h2

2
f ′′(x0)− ih3

6
f (3)(x0) +

h4

24
f (4) + ... (8)

The imaginary part is

=(f(x0 + ih)) = hf ′(x0)− h3

6
f (3)(x0) + ... (9)

Assuming that h is small, the series can be truncated after the first term, yielding the following expression
for the first order derivative

f ′(x0) ≈ =(f(x0 + ih))

h
(10)

Since the above expression does not contain a subtraction, the rounding error is eliminated. The algorithm
is thus well-behaved.

Note that this method only can be used to calculate the first derivative of a function. Trying to solve
for the second or third derivative of f will not give any improvement in accuracy because the expression
contains a difference term, resulting in rounding error.

For examples on how to apply this method, see Section A.1, Section A.2 and Section A.3 in Appendix
A.
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3 COMPLEX DIFFERENTIATION

3.2 n-th order derivatives using Cauchy’s integral theorem

Lyness and Moler first used complex numbers to calculate approximations of higher-order differentials of
functions in 1967[3].

Cauchy’s integral formula states that ∮
C

f(z)

z − z0
dz = 2πif(z0) (11)

The proof is straightforward

Proof. Let z = z0 + εeit, 0 ≤ t ≤ 2π and ε is the radius of the circle. Then

1

2π

∮
C

f(z)

z − z0
dz − f(z0) =

1

2π

∮
C

f(z)

z − z0
dz − f(z0)

1

2π

∮
C

1

z − z0
dz

=
1

2πi

∮
C

f(z)− f(z0)

z − z0
dz

=
1

2πi

∫ 2π

0

(
f(z(t))− f(z0)

εeit
εeiti

)
dt

≤ 1

2π

∫ 2π

0

(
|f(z(t))− f(z0)|

ε
ε

)
dt =

1

2π

∫ 2π

0

f ′(z) lim
ε→0

εdt

≤ max
|z−z0|=ε

|f(z)− f(z0)| → 0 as ε→ 0

The last inequality results from the estimation lemma. Furthermore, it was used that∮
C

1

z − z0
dz =

∮
1

ε
e−it · iεeitdt =

∮
C

idt = 2πi

Assuming that f is analytic on a domain D containing the closed curve C, then it can be shown that all the
derivatives of f can be calculated as

fn(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
(12)

Using the trapezoidal rule, the contour integral can be approximated as [4]

fn(z0) ≈ n!

mε

m−1∑
j=0

f
(
z0 + εei

2πj
m

)
ei

2πjn
m

(13)

This method also contains a subtraction of two equally sized terms, which might lead to rounding error
when h becomes too small. But unlike the finite difference method, h is not the only parameter that can be
adjusted in order to obtain higher accuracy. By selection a larger m, i.e. by using more points to approximate
the contour integral, a higher accuracy can be achieved as well.
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4 MULTI-COMPLEX STEP DIFFERENTIATION

4 Multi-complex step differentiation

The disadvantage of using Cauchy’s integral theorem for calculating higher order differentials is the large
number of function evaluations required to obtain high accuracy when calculating the contour integral. Even
then, the method is somewhat prone to rounding error due to the summation term in Equation 13

An alternative method for calculating higher-order derivatives can be found by extending Squire and Trapp’s
complex step method into the multicomplex domain. The multicomplex domain contains more than one com-
plex plane, as the name suggests. Since one complex dimension is often sufficient to solve most problems,
little attention has been paid to multicomplex mathematics. Price did substantial work on this field in the
70’s, and his work will be used as a foundation to derive the multicomplex step method described in the
next sections.

4.1 Definition of multicomplex numbers

Consider a multicomplex number ζn. The set of multicomplex numbers of order n is [5]

Cn =
{
ζn = ζn−1,1 + ζn−1,2 · in : ζn−1,1, ζn−1,2 ∈ Cn−1

}
(14)

Each complex space can be defined in terms of variables from the underlying complex space. For example,
the bicomplex space is defined as

C2 = {ζ2 = z1 + z2 · i2 : z1, z2 ∈ C1} (15)

Finally, the ”monocomplex” space is defined as

C1 = {z = x1 + x2 · i1 : x1, x2 ∈ C0 = R} (16)

From insertion it follows that Cn also can be defined as

Cn ={ζn = ζn−2,1 + ζn−2,2 · in−1 + ζn−2,3 · in + ζn−2,4 · in−1 · in :

ζn−2,1, ζn−2,2, ζn−2,3, ζn−2,4 ∈ Cn−2}
(17)

Through recursive insertion, it follows that every multicomplex number in Cn can be represented by 2n

parameters in R

Basic mathematical operations in Cn are similar to operations in C1. Mathematical operations in C2 and
C3 are explained in great detail in Price’s book [5]. Generalizations in Cn are also included.

4.1.1 Matrix representation of multicomplex numbers

A useful tool for doing basic mathematical operations with complex numbers is the so-called matrix repre-
sentation of complex numbers. The monocomplex number z can be represented by its matrix Z

Z =

[
x1 −x2
x2 x1

]
(18)

Basic mathematical operations such as addition, subtraction, multiplication and division of complex numbers
are easily performed on their matrix representations. For example, multiplication of two complex numbers
can be done as

Zc = Za · Zb =

[
xa,1 −xa,2
xa,2 xa,1

]
·
[
xb,1 −xb,2
xa,2 xb,1

]
(19)

=

[
xa,1xb,1 − xa,2xb,2 −(xa,1xb,2 − xa,2xb,1)
xa,1xb,2 − xa,2xb,1 xa,1xb,1 − xa,2xb,2

]
(20)

=

[
xc,1 −xc,2
xc,2 xc,1

]
(21)
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4 MULTI-COMPLEX STEP DIFFERENTIATION

One necessary property of the matrix representation is that the square of the complex unit vector equals to
one.

E2 =

[
0 −1
1 0

]
·
[
0 −1
1 0

]
=

[
−1 0
0 −1

]
(22)

These matrices can also be used for addition, subtraction and division.

The equivalent of these complex matrix represenations can be defined for multicomplex numbers as well.
Using the introduced notation, the matrix representation of the multicomplex number ζn can be written as

Zn =

[
ζn−1,1 −ζn−1,2
ζn−1,2 ζn−1,1

]
(23)

Due to the recursive nature of multicomplex numbers, one can use block matrices to represent higher dimen-
sional multicomplex numbers as matrices of multicomplex number of lower dimensionality. For example, the
matrix representation of the bicomplex number ζ2 can be written as

Z2 =

[
z1 −z2
z2 z1

]
=


x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1

 (24)

As can be seen, the matrix representation of an n-dimensional multicomplex number has is of size 2n × 2n

when written in terms of parameters in R.

4.1.2 Some mathematical functions in Cn

In addition to the basic mathematical operators, functions of multicomplex numbers must also be defined.
Just like functions of complex numbers can be rewritten in terms of their real and imaginary parts, multi-
complex numbers must be rewritten in terms of their real and imaginary parts. Let us for example take the
cosine function. It can be shown that

cos(z) = cos(x1)cosh(x2)− isin(x1)sinh(x2) (25)

A very similar relationship is valid for numbers in higher complex dimensions

cos(ζn) = cos(ζn−1,1)cosh(ζn−1,2)− insin(ζn−1,1)sinh(ζn−1,2) (26)

Most functions are easily adapted to take multicomplex arguments. Problems arise when treating inverse
functions, however. Due to their non-injective nature, it is difficult to define them in an unambiguous way.
The inverse trigonometric functions, for example, have multiple solutions depending on the quadrant of the
complex input. The situation is even worse for bicomplex numbers, in which case there will be different
solutions depending on which octant the input is in. Caution must be taken when trying to implement these
functions.
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4 MULTI-COMPLEX STEP DIFFERENTIATION

4.2 Complex step differentiation algorithm

With the definition of multicomplex numbers, one can now easily extend Squire & Trapp’s complex step
method to the multicomplex domain in order to calculate higher order derivatives. This idea was first ex-
plored by Lantoine et al. in 2012 [2].

Assume that f is a holomorphic function, i.e. is infinitely differentiable. The Taylor series of f around
the real point x0 can be written as:

f(x0 + i1h+ ...+ inh) = f(x0) + (i1h+ ...+ inh)f ′(x0) +
(i1h+ ...+ inh)2

2
f ′′(x0) + ... (27)

=

∞∑
k=0


 n∑
l=1

il · h

k

f (k)

k!

 (28)

The term
(∑n

l=1 il · h
)k

can be expanded using the multinomial theorem, which states that m∑
i=1

ixi

n

=
∑

k1+k2+...+km=n

(
n

k1, k2, ..., km

) ∏
1≤i≤m

xkii (29)

where the binomial coefficient is defined as(
n

k1, k2, ..., km

)
=

n!

k1!k2!...km!
(30)

The n-th order derivative is the only derivative containing the unique term hn
(∏n

l il
)
, as can be seen from

the multinomial theorem. In that case k1 = k2 = ... = kn = 1. Let us define the function =1...n which
retrieves the part of the multicomplex number corresponding to x2n ∈ R.

x2n = =1

(
=2

(
...
(
=n (ζn)

)
...
))

= =1...n (ζn) (31)

It follows that the n-order derivative can be calculated as

f (n)(x0) =
=1...n

(
f
(
x0 +

∑n
k=1 h · ik

))
hn

(32)

which is very similar to the first order approximation derived by Squire & Trapp. By making h sufficiently
small, any accuracy can be obtained, down to machine precision.
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6 COMPARISON TO OTHER DIFFERENTATION METHODS

5 Implementation of bicomplex numbers in MATLAB

The multicomplex step differentiation method is easily implemented in MATLAB once a multicomplex class
has been constructed. Due to the recursive nature of multicomplex numbers, it is in theory only necessary
to construct the class once. All subsequent classes can be defined recursively from the first class, inheriting
all its methods. A bicomplex class was therefore written in MATLAB as a proof of concept. The script that
implements the bicomplex class is attached in Appendix B.1.

In theory it should have been possible to inherit the methods and properties of the built-in complex class
in MATLAB, but since built-in classes are not available for reading or writing, the author was not able
to do this. Instead, all necessary methods were defined manually. This includes common operations such
as initiation, indexing and concatenation, but also mathematical operations such as addition, subtraction,
multiplication and division.

Functions such as the trigonometric and the exponential functions were overloaded manually using simi-
lar definitions as for monocomplex numbers. It was first attempted to overload all functions automatically
by looping through all functions contained in the symbolic toolbox. The functions were split up into one
real and three complex parts (corresponding to i1, i2 and i1i2) through two sets of substitution. But this
method was not well suited due to the symbolic toolbox struggling to split some functions into their real
and imaginary parts, resulting in calls to the ’imag’ and ’real’-function in the final expressions. The sym-
bolic toolbox also failed to overload inverse functions such as arcsin and arccos, since it chose one particular
solution resulting in =1 = =12 = 0 for all bicomplex numbers.

The bicomplex class seems to work fine for the mentioned simple functions, but inverse functions have
not yet been implemented due to the authors lacking mathematical knowledge. However, the framework is
built and it should be relatively easy to implement the missing functions in the future.

The bicomplex class was written in such a way that it can easily be adopted for tricomplex or multicomplex
numbers.

6 Comparison to other differentation methods

6.1 Automatic differentiation

It was difficult to find an AD package for MATLAB which is easy to use, so it was unfortunately not possible
to compare the speed of the bicomplex differentation method with the speed of AD. It is expected that
multicomplex differentiation and AD have similar performances since both techniques are based on breaking
down the code to elementary operations. The idea behind AD is to apply the chain rule to each elementary
operation in the code, whereas the idea in complex differentiation is to treat all variables as complex vari-
ables and perform elementary operations on them. This means that for both techniques, the computation
time is expected to be related to the complexity of the differentiated function. For very large systems, the
chain rule becomes increasingly computationally intensive. The same is true for complex differentiation.
Consider the multiplication of two multicomplex numbers, for example. Since multiplication is done on the
matrix representations of the numbers, the computation time scales quadratically with the size of the system.

The memory cost of multicomplex differentiation is comparable to the memory cost of AD for first or-
der derivatives, but becomes increasingly larger for higher order derivatives. This is because each variable
is associated with n values in AD, whereas each variable is associated with n2 values in multicomplex dif-
ferentiation. In the case of bicomplex numbers and second order derivatives, multicomplex differentiation is
twice as memory intensive as AD.

According to Lantoine, his MultiComplex Step method outperformed AD02, which is a AD method written
for Fortran 90 [2]. Lantoine’s MultiComplex Step method was outperformed by TAPENADE, but unlike
AD02 it transforms the source program and is limited to first-order derivatives. Judging by Lantoine’s results,
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6 COMPARISON TO OTHER DIFFERENTATION METHODS

it could seem that multicomplex differentiation methods on average perform on a par with AD methods.
However, Lantoine also states that his results should only be used as an indication, as the performance is
varying from problem to problem.

6.2 Symbolic differentiation

Symbolic differentiation is known to be relatively slow and memory intensive. Expressions for the derivative
are known to grow exponentially, which can lead to problems in the execution of the code [1].

It was attempted to write a script that tests how the computation time of a problem increases with in-
creasing complexity. The following equation was evaluated for a range of x.

f(x) =
x4sin(x)

x+ ex

x is a square matrix with random values. The size of x increases with each iteration. Figure 6.2 shows the
obtained results.

Figure 2: Computation time for calculating the first order derivative as a function of the number of variables.
Symbolic differentiation in blue, multicomplex differentiation in red.

As can be seen from the figure, it seems as if the multicomplex differentiation method is much better suited
for calculating the derivative of large systems, such as 25x25 matrices. Both methods seem to increase
linearly with increasing number of variables. It could look like multicomplex differentiation is independent
of input size, but this is not true. Figure B.1 shows the average computation time for the multicomplex
differentiation method.
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6 COMPARISON TO OTHER DIFFERENTATION METHODS

Figure 3: Computation time for calculating the first order derivative as a function of the number of variables
using the multicomplex differentiation method.

As can be seen from the figure, the method still works exceptionally well for 150x150 systems with close to
25000 variables. It was attempted to compute the derivative of the same system using the symbolic toolbox,
but the attempt was terminated after several seconds without a result.

The good performance of the multicomplex method can be attributed to the fact that MATLAB is optimized
to perform large matrix calculations. Since the multicomplex method consists of elementary operations on
matrix representations, it will be very fast. The script that was used to obtain the above figures is attached
in Appendix B.2

However, the huge performance difference could also be due to implementation errors or other factors that
were not considered here. One should therefore take the results with a pinch of salt.

6.3 Why is multicomplex differentiation not widely used?

The results from the previous sections indicate that multicomplex differentiation is a viable alternative to the
most commonly used differentiation methods. Some possible reasons as to why multicomplex differentiation
is not widely used include:

• Multicomplex numbers remain uncharted territory in mathematics, and only a few publications exist on
the subject. Lantoine’s paper on multicomplex differentiation was published in 2012, which is several
decades later than when AD was first introduced.

• Automatic differentiation is based on a very simple principle and is easy to implement. A lot of research
has been done to develop AD software and optimize it.
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7 CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

7 Conclusion and suggestions for future work

Multicomplex step differentiation is a good alternative to other differentiation methods if high precision is
desired and small step sizes are necessary. Implementation of multicomplex numbers is relatively easy in
MATLAB, though inverse functions still pose some problems.

The performance seems to be satisfactory. According to literature, multicomplex differentiation is a vi-
able alternative to automatic differentiation. Results from tests give reason to believe that multicomplex
differentiation outperforms MATLAB’s built-in symbolic differentiation function from the Symbolic Toolbox.

Suggestions for future work:

• Implement the missing functions, including the inverse functions.

• Generalize the class such that it works for higher-dimensional complex numbers.

• Do an in-debth comparison of advantages and disadvantages of the most commonly used differen-
tiation methods, including variations of finite difference methods, AD, symbolic differentiation and
(multi)complex differentiation.

14



REFERENCES

References

[1] Dan Kalman. Doubly recursive multivariate automatic differentiation. Mathematics Magazine, 75(3):pp.
187–202, 2002.

[2] Gregory Lantoine, Ryan P Russell, and Thierry Dargent. Using multicomplex variables for automatic
computation of high-order derivatives. ACM Transactions on Mathematical Software (TOMS), 38(3):16,
2012.

[3] James N Lyness and Cleve B Moler. Numerical differentiation of analytic functions. SIAM Journal on
Numerical Analysis, 4(2):202–210, 1967.

[4] Joaquim R. R. A. Martins, Ilan M. Kroo, and Juan J. Alonso. An automated method for sensitivity
analysis using complex variables. Proceedings of the 38th AIAA Aerospace Sciences Meeting, January
2000. AIAA 2000-0689.

[5] Griffith Baley Price. An Introduction to Multicomplex Spaces and Functions. Chapman & Hall/CRC
Pure and Applied Mathematics. Taylor & Francis, 1990.

[6] William Squire and George Trapp. Using complex variables to estimate derivatives of real functions.
Siam Review, 40(1):110–112, 1998.

15
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Appendices

A Examples

To demonstrate the practical applications of the described complex step differentiation methods, the first

and second order derivatives of the two functions f1(x) = 1
x and f2(x) = sin(x)

x will be calculated manually
in the following sections. It will also be shown how to use the extend the (multi)complex step method to
calculate the Jacobian and Hessian matrices.

A.1 Example 1: First order derivative of f(x) = 1
x

Consider the function

f(x) =
1

x
(33)

The derivative of the function is to be estimated at a point x0 using the method described in Section 3.1.
Defining

z = x0 + ih (34)

Substituting into Equation 33

f(z) =
1

z
=

1

x0 + ih
(35)

The function can be split up into its real and imaginary parts by remembering the relationship between the
modulus and the complex conjugate

z · z̄ = |z|2 (36)

where the complex conjugate of z is defined as

z̄ = x0 − ih (37)

and the modulus of z is defined as

|z| =
√
x20 + h2 (38)

Equation 35 can thus be written as
1

z
=
x0 − ih
x20 + h2

(39)

Following the method from Section 3.1, the first order derivative can now be calculated as

f ′(x0) ≈ =(f(x0 + ih))

h
=

−1

x20 + h2
(40)

It can be seen that the expression does not contain any subtractions, and does therefore not suffer from
rounding errors. Taking the limit as h goes to zero yields the exact function

lim
h→0

=(f(x0 + ih))

h
= − 1

x20
= f ′(x) (41)
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A.2 Example 2: First order derivative of f(x) = sin(x)
x

Now consider the function

f(x) =
sin(x)

x
(42)

Substituting z = x0 + ih into the expression gives

f(z) =
sin(z)

z
=

sin(x0 + ih)

x0 + ih
(43)

The expression for f(z) can be split into its real and complex parts by remembering that

sin(z) = sin(x0 + ih) = sin(x0)cosh(h) + i · sin(x0)sinh(h) (44)

Such that

f(z) =

(
x0 − ih
x20 + h2

)
·
(
sin(x0)cosh(h) + i · sin(x0)sinh(h)

)
(45)

The first order derivative can be expressed as

f ′(x0) ≈ =(f(x0 + ih))

h
=
x0cos(x0) sinh(h)

h − hsin(x0) cosh(h)
h

x20 + h2
(46)

The derivative of f is found by letting the limit of h go to zero

f ′(x) =
cos(x)

x
− sin(x)

x2
(47)

Again, no subtraction of equally sized numbers occurs, eliminating the round-off error.

A.2.1 Comparison to the finite difference method

The above function was evaluated using MATLAB. The attached script in Appendix B.3 evaluates the
derivative of sin(x)/x at x0 = π

2

Evaluated at the point x0 = π
2 , the exact solution is

f ′(x0) = − 4

π2

Running the attached script, the absolute errors between the exact value and the estimated values are
calculated for different step sizes. The resulting graph is shown in Figure A.2.1. Note that the central
difference method starts failing at a step size of approximately h = 10−5. This value corresponds somewhat
well with the rule of thumb saying that h = x

√
ε ≈ 10−8 gives the best trade-off between rounding error

and truncation error. It can be seen from the figure that values larger than h = 10−5 result in increasing
rounding error. For very small step sizes close to the machine precision, the method breaks down completely.
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Figure 4: Absolute errors between exact value and estimated value of the first order derivative of sin(x)
x

evaluated at x0 = π
2

A.3 Example 3: Using complex step differentiation to find the Jacobian matrix

Given a system of equations f(x) where x = [x1, x2, ..., xn]T , then the Jacobian matrix of the system can be
defined as

J =


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

 (48)

Using the complex step differentiation method, the Jacobian matrix can be approximated as

J ≈ =


f1(x + ihe1) f1(x + ihe2) · · · f1(x + ihen)
f2(x + ihe1) f2(x + ihe2) · · · f2(x + ihen)

...
...

. . .
...

fm(x + ihe1) fm(x + ihe2) · · · fm(x + ihen)

 1

h
(49)

Where ei is defined such that I = [e1, e2, ..., en]

A function is written in MATLAB to calculate the Jacobian matrix for a system of equations. The script is
attached in Appendix B.4
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A.4 Example 4: Second order derivative of f(x) = 1
x

According to the derived rules in Section 4.1, the second order derivative of f(x) = 1
x can be calculated as

f ′′(x) ≈ =12(f(x+ i1h+ i2h))

h2
=
=1(=2(f(x+ i1h+ i2h)))

h2
(50)

Where =12 is defined as

=12(ζ2) = ζ0,4 (51)

and

ζ2 =
(
ζ0,1 + ζ0,2 · i1 + ζ0,3 · i2 + ζ0,4 · i1 · i2

)
:

ζ0,1, ζ0,2, ζ0,3, ζ0,4 ∈ R
(52)

In other words, =12 is the function which retrieves the term associated with both i1 and i2.

Substituting x→ ζ2 = x+ i1h+ i2h into the expression gives

f(ζ2) =
1

x+ i1h+ i2h
(53)

=
(x+ i1h)− i2h
(x+ i1h)2 + h2

(54)

=
(x+ i1h)− i2h
x2 + 2i1hx

(55)

=
(x+ i1h− i2h)

(
x2 − 2i1hx

)
x4 + 4h2x2

(56)

=
x3 + 2xh2

x4 + 4h2x2
+

−x2h
x4 + 4h2x2

i1 +
−x2h

x4 + 4h2x2
i2 +

2xh2

x4 + 4h2x2
i1i2 (57)

It was used that

ζζ̄ = |ζ|2 → 1

ζ
=

ζ̄

|ζ|2
(58)

Comparison of Equation 71 with Equation 52 gives

f0,1(x) =
x3 + 2xh2

x4 + 4h2x2
(59)

f0,2(x) = − x2h

x4 + 4h2x2
(60)

f0,3(x) = − x2h

x4 + 4h2x2
(61)

f0,4(x) =
2xh2

x4 + 4h2x2
(62)

(63)

With f0,i(x) being related to f2(ζ2) in a similar way to how ζ0,i is related to ζ2, namely being the part of
the function which gives the corresponding imaginary term.

The derivative of f(x) = 1
x can now be calculated from Equation 50

f ′′(x) ≈ =12(f(x0 + i1h+ i2h))

h2
=
f0,4
h2

=
2x

x4 + 4h2x2
(64)

Taking the limit as h goes to zero gives the exact solution

f ′′(x) = lim
h→0

(
2x

x4 + 4h2x2

)
=

2

x3
(65)
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Alternatively, one can use the definition on the right hand side of Equation 50 to calculate the derivative.

=2(f(ζ2)) = =2

(
(x+ i1h)− i2h
x2 + 2i1hx

)
=

−h
x2 + 2i1hx

(66)

=
−h(x2 − 2i1hx)

x4 + 4h2x2
(67)

f ′′(x) ≈ =1(=2(f(x0 + i1h+ i2h)))

h2
=

2x

x4 + 4h2x2
(68)

The two methods are equivalent, though the first approach might be more efficient if implemented into a
computer program. This is because fewer function calls are required (only one call to =12 instead of two
calls to =1 and =2)

It should also be noted that Equation 71 contains terms associated with all the lower order derivatives.
In fact, substitution of x → ζn into a function f(x) will not only provide the nth derivative, but also all
lower order derivatives from f (n−1)(x) to f (1)(x).
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A.5 Example 5: Second order derivative of f(x) = sin(x)
x

Substituting x→ ζ2 = x+ i1h+ i2h into f(x) = sin(x)
x gives

f(ζ2) =
sin(x+ i1h+ i2h)

x+ i1h+ i2h
(69)

(70)

The result from the previous section can be utilized

f(ζ2) =

(
x3 + 2xh2

x4 + 4h2x2
+

−x2h
x4 + 4h2x2

i1 +
−x2h

x4 + 4h2x2
i2 +

2xh2

x4 + 4h2x2
i1i2

)
sin(x+ i1h+ i2h) (71)

The term sin(x+ i1h+ i2h) can be expanded using the following rules

sin(x1 + x2i) = sin(x1)cos(x2i) + cos(x1)sin(x2i) (72)

= sin(x1)cosh(x2) + i · cos(x1)sinh(x2) (73)

cos(x1 + x2i) = cos(x1)cos(x2i)− sin(x1)sin(x2i) (74)

= cos(x1)cosh(x2)− i · sin(x1)sinh(x2) (75)

(76)

The relationships can be derived using basic trigonometric identities and the relationship between the trigono-
metric functions and the exponential function.

Let g = sin(x+ i1h+ i2h). Then g can be written as

g(ζ2) = sin(x+ i1h+ i2h) (77)

= sin(x+ i1h)cosh(h) + i2cos(x+ i1h)sinh(h) (78)

= sin(x)cosh2(h) + i1cos(x)sinh(h)cosh(h) + i2cos(x)cosh(h)sinh(h)− i1i2 · sin(x)sinh2(h) (79)

f(ζ2) can now be rewritten as a sum of the different complex terms

f(ζ2) =

(
2h2 sin(x) + x2 cosh(h)

2
sin(x) + hx sinh(2h) cos(x)

4h2 x+ x3

)

− i1

(
h cosh(2h) sin(x)− x sinh(2h) cos(x)

2

4h2 + x2

)

− i2

(
h cosh(2h) sin(x)− x sinh(2h) cos(x)

2

4h2 + x2

)

+ i1i2

2h2 sin(x) + x2 sin(x)
2 − x2 cosh(2h) sin(x)

2 − hx sinh(2h) cos(x)

4h2 x+ x3



(80)

The function is now on the form

f(ζ2) = f0,1(x) + f0,2(x)i1 + f0,3(x)i2 + f0,4(x)i1i2

f0,i(x) : R→ R
(81)

The second derivative of f(x) = sin(x)
x can now be approximated as

f ′′(x) ≈ =12(f(x+ i1h+ i2h))

h2
=
f0,4(x)

h2
(82)
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Letting the limit of h go to zero, the exact expression is obtained

f ′′(x) = lim
h→0

f0,4(x)

h2
= −x

2 sin(x)− 2 sin(x) + 2x cos(x)

x3
(83)

As the calculations from this section show, things get out of hands rather quickly, with calculations being
difficult to do even for relatively simple functions.
[2]

A.5.1 Comparison to the finite difference method

The above function was evaluated using MATLAB. The attached script in Appendix B.5 evaluates the
derivative of sin(x)/x at x0 = π

2

Evaluated at the point x0 = π
2 , the exact solution is

f ′′(x0) =
16

π3
− 2

π

Running the attached script, the absolute errors between the exact value and the estimated values are
calculated for different step sizes. The resulting graph is shown in Figure A.5.1. Note that the central
difference method starts failing at a step size of approximately h = 10−3. For very small step sizes close
to the machine precision, the method breaks down completely and gives oscillatory behaviour. It can also
be observed that for relatively large step sizes, it seems as if the central difference method outperforms the
multicomplex step method. This could either be an implementation error or be related to the remaining
h-terms in the expression, which somehow decrease the accuracy.
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Figure 5: Absolute errors between exact value and estimated value of the second order derivative of sin(x)
x

evaluated at x0 = π
2
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A.6 Example 6: Using multicomplex step differentiation to calculate the Hes-
sian matrix

Given the multivariable equation f(x) where x = [x1, x2, ..., xn]T , then the Hessian matrix of f can be
defined as

H =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂f2(x)
∂x1∂xn

∂2f(x)
∂x2∂x2

1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn
...

...
. . .

...
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2
n

 (84)

Using the multicomplex step differentiation method, the Hessian matrix can be approximated as

H ≈ =12


f(x + i1he1 + i2he1) f(x + i1he2 + i2he1) · · · f(x + i1hen + i2he1)
f(x + i1he1 + i2he2) f(x + i1he2 + i2he2) · · · f(x + i1hen + i2he2)

...
...

. . .
...

f(x + i1he1 + i2hen) f(x + i1he2 + i2hen) · · · f(x + i1hen + i2hen)

 1

h2
(85)

Where ei is defined as the unit vector such that I = [e1, e2, ..., en]

A function is written in MATLAB to calculate the Hessian of a function. The script is attached in Ap-
pendix B.6
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B MATLAB scripts

B.1 Bicomplex class

1 classdef bicomplex

2 %% BICOMPLEX(z1,z2)

3 % Creates an instance of a bicomplex object.

4 % zeta = z1 + j*z2, where z1 and z2 are complex numbers.

5

6 properties

7 z1, z2

8 end

9

10 methods % Initialization

11 function self = bicomplex(z1,z2)

12 if nargin ~= 2

13 error(’Requires exactly 2 inputs’)

14 end

15 if ~isequal(size(z1),size(z2))

16 error(’Inputs must be equally sized’)

17 end

18 self.z1 = z1;

19 self.z2 = z2;

20 end

21 end

22

23 methods % Basic operators

24

25 function mat = matrep(self) % Returns matrix representation

26 mat = [self.z1,-self.z2;self.z2,self.z1];

27 end

28

29 function display(self)

30 disp(’z1:’)

31 disp(self.z1)

32 disp(’z2:’)

33 disp(self.z2)

34 end

35

36 function out = subsref(self,index) % Indexing

37 if strcmp(’()’,index.type)

38 out = bicomplex([],[]);

39 out.z1 = builtin(’subsref’,self.z1,index);

40 out.z2 = builtin(’subsref’,self.z2,index);

41 elseif strcmp(’.’,index.type)

42 out = eval([’self.’,index.subs]);

43 end

44 end

45

46 function out = subsasgn(self,index,value) % Asigning

47 if strcmp(’()’,index.type)

48 out = bicomplex([],[]);

49 out.z1 = builtin(’subsasgn’,self.z1,index,value);

50 out.z2 = builtin(’subsasgn’,self.z2,index,value);
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51 elseif strcmp(’.’,index.type)

52 if ~(strcmp(index.subs,’z1’) || strcmp(index.subs,’z2’))

53 error(’No such field exists. Use z1 and z2 instead’)

54 else

55 if strcmp(index.subs,’z1’)

56 z_1 = value;

57 z_2 = self.z2;

58 else

59 z_2 = value;

60 z_1 = self.z1;

61 end

62 out = bicomplex(z_1,z_2);

63 end

64

65 end

66 end

67

68 function out = horzcat(self,varargin) % Horizontal concatenation

69 z_1 = [self.z1];

70 z_2 = [self.z2];

71 for i = 1:length(varargin)

72 [~,tmp] = isbicomp([],varargin{i});

73 z_1 = [z_1,tmp.z1];

74 z_2 = [z_2,tmp.z2];

75 end

76 out = bicomplex(z_1,z_2);

77 end

78

79 function out = vertcat(self,varargin) % Vertical concatenation

80 z_1 = [self.z1];

81 z_2 = [self.z2];

82 for i = 1:length(varargin)

83 [~,tmp] = isbicomp([],varargin{i});

84 z_1 = [z_1;tmp.z1];

85 z_2 = [z_2;tmp.z2];

86 end

87 out = bicomplex(z_1,z_2);

88 end

89

90 function out = plus(self,other) % Addition

91 [self,other] = isbicomp(self,other);

92 zeta = matrep(self)+matrep(other);

93 out = mat2bicomp(zeta);

94 end

95

96 function out = minus(self,other) % Subtraction

97 [self,other] = isbicomp(self,other);

98 zeta = matrep(self)- matrep(other);

99 out = mat2bicomp(zeta);

100 end

101

102 function out = uplus(self) % Unary plus

103 out = self;

104 end
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105

106 function out = uminus(self) % Unary minus

107 out = -1*self;

108 end

109

110 function out = mtimes(self,other) % Multiplication

111 [self,other] = isbicomp(self,other);

112 if ~prod(size(self)==size(other)) && numel(self) == 1

113 mat = matrep(self.*other);

114 elseif ~prod(size(self)==size(other)) && numel(other) == 1

115 mat = matrep(self.*other);

116 else

117 mat = matrep(self)*matrep(other);

118 end

119 out = mat2bicomp(mat);

120 end

121

122 function out = times(self,other) % Elementwise multiplication

123 [self,other] = isbicomp(self,other);

124 if size(self) == size(other)

125 sizes = size(self);

126 z_1 = zeros(sizes);

127 z_2 = zeros(sizes);

128 for i = 1:prod(sizes)

129 sr.type = ’()’;

130 sr.subs = {i};

131 tmp = subsref(self,sr)*subsref(other,sr);

132 z_1(i) = tmp.z1;

133 z_2(i) = tmp.z2;

134 end

135 elseif numel(self) == 1

136 sizes = size(other);

137 z_1 = zeros(sizes);

138 z_2 = zeros(sizes);

139 for i = 1:prod(sizes)

140 sr.type = ’()’;

141 sr.subs = {i};

142 tmp = self*subsref(other,sr);

143 z_1(i) = tmp.z1;

144 z_2(i) = tmp.z2;

145 end

146 elseif numel(other) == 1

147 sizes = size(self);

148 z_1 = zeros(sizes);

149 z_2 = zeros(sizes);

150 for i = 1:prod(sizes)

151 sr.type = ’()’;

152 sr.subs = {i};

153 tmp = subsref(self,sr)*other;

154 z_1(i) = tmp.z1;

155 z_2(i) = tmp.z2;

156 end

157 else

158 error(’Matrix dimensions must agree’)
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159 end

160 out = bicomplex(z_1,z_2);

161 end

162

163 function out = mrdivide(self,other) % Division

164 if numel(other) == 1 && numel(other) ~=numel(self)

165 mat = matrep(self./other);

166 else

167 [self,other] = isbicomp(self,other);

168 mat = matrep(self)/matrep(other);

169 end

170 out = mat2bicomp(mat);

171 end

172

173 function out = rdivide(self,other) % Elementwise division

174 [self,other] = isbicomp(self,other);

175 if size(self) == size(other)

176 sizes = size(self);

177 z_1 = zeros(sizes);

178 z_2 = zeros(sizes);

179 for i = 1:prod(sizes)

180

181 sr.type = ’()’;

182 sr.subs = {i};

183 tmp = subsref(self,sr)/subsref(other,sr);

184 z_1(i) = tmp.z1;

185 z_2(i) = tmp.z2;

186 end

187 elseif numel(self) == 1

188 sizes = size(other);

189 z_1 = zeros(sizes);

190 z_2 = zeros(sizes);

191 for i = 1:prod(sizes)

192 sr.type = ’()’;

193 sr.subs = {i};

194 tmp = self/subsref(other,sr);

195 z_1(i) = tmp.z1;

196 z_2(i) = tmp.z2;

197 end

198 elseif numel(other) == 1

199 sizes = size(self);

200 z_1 = zeros(sizes);

201 z_2 = zeros(sizes);

202 for i = 1:prod(sizes)

203 sr.type = ’()’;

204 sr.subs = {i};

205 tmp = subsref(self,sr)/other;

206 z_1(i) = tmp.z1;

207 z_2(i) = tmp.z2;

208 end

209 else

210 error(’Matrix dimensions must agree’)

211 end

212 out = bicomplex(z_1,z_2);
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213 end

214

215 function out = power(self,other) % Elementwise power

216 sizes = size(self);

217 z_1 = zeros(sizes);

218 z_2 = zeros(sizes);

219

220 for i = 1:length(z_1(:))

221 sr.type = ’()’;

222 sr.subs = {i};

223 r = modc(subsref(self,sr));

224 theta = argc(subsref(self,sr));

225 z_1(i) = r^other*cos(other*theta);

226 z_2(i) = r^other*sin(other*theta);

227 end

228 out = bicomplex([],[]);

229 out.z1 = z_1;

230 out.z2 = z_2;

231

232 end

233

234 function out = mpower(self,other) % Elementwise power

235 sizes = size(self);

236 z_1 = zeros(sizes);

237 z_2 = zeros(sizes);

238

239 for i = 1:length(z_1(:))

240 sr.type = ’()’;

241 sr.subs = {i};

242 r = modc(subsref(self,sr));

243 theta = argc(subsref(self,sr));

244 z_1 = r^other*cos(other*theta);

245 z_2 = r^other*sin(other*theta);

246 end

247 out = bicomplex([],[]);

248 out.z1 = z_1;

249 out.z2 = z_2;

250

251 end

252

253 function dims = size(self) % Returning size of array

254 dims = size(self.z1);

255 end

256

257 function n = numel(self) % Returning number of elements

258 n = numel(self.z1);

259 end

260

261 function out = modc(self) % Complex modulus

262 out = sqrt(self.z1.^2 + self.z2.^2);

263 end

264

265 function out = norm(self) % Norm

266 out = sqrt(real(self.z1).^2 + real(self.z2).^2 + ...
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267 imag(self.z1).^2 + imag(self.z2).^2);

268 end

269

270 function theta = argc(self) % Complex argument

271 theta = atan2(self);

272 end

273

274 function out = lt(self,other) % Less than, self < other

275 out = false;

276 if real(self.z1) < real(other.z1)

277 out = true;

278 end

279 end

280

281 function out = gt(self,other) % Greater than, self > other

282 out = false;

283 if real(self.z1) > real(other.z1)

284 out = true;

285 end

286 end

287

288 function out = le(self,other) % Less than or equal, self <= other

289 out = false;

290 if real(self.z1) <= real(other.z1)

291 out = true;

292 end

293 end

294

295 function out = ge(self,other) % Greater than or equal, self >= other

296 out = false;

297 if real(self.z1) >= real(other.z1)

298 out = true;

299 end

300 end

301

302 function out = eq(self,other) % Equality, self == other

303 out = false;

304 if self.z1 == other.z1 && self.z2 == other.z2

305 out = true;

306 end

307 end

308

309 function out = ne(self,other) % Not equal, self ~= other

310 out = true;

311 if self.z1 == other.z1 && self.z2 == other.z2

312 out = false;

313 end

314 end

315

316 end

317

318 methods % Mathematical functions

319 %% Exponential function and logarithm

320 function out = exp(self) % Exponential
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321 out = bicomplex([],[]);

322 out.z1=exp(self.z1).*cos(self.z2);

323 out.z2=exp(self.z1).*sin(self.z2);

324 end

325

326 function out = log(self) % Natural logaritm

327 out = bicomplex([],[]);

328 out.z1=log(modc(self));

329 out.z2=argc(self);

330 end

331

332 %% Basic trigonometric functions

333 function out = sin(self) % sin

334 out = bicomplex([],[]);

335 out.z1=cosh(self.z2).*sin(self.z1);

336 out.z2=sinh(self.z2).*cos(self.z1);

337 end

338

339 function out = cos(self) % cos

340 out = bicomplex([],[]);

341 out.z1=cosh(self.z2).*cos(self.z1);

342 out.z2=-sinh(self.z2).*sin(self.z1);

343 end

344

345 function out = tan(self) % tan

346 out = sin(self)./cos(self);

347 end

348

349 function out = cot(self) % cot

350 out = cos(self)./sin(self);

351 end

352

353 function out = sec(self) % sec

354 out = 1./cos(self);

355 end

356

357 function out = csc(self) % csc

358 out = 1./sin(self);

359 end

360

361 %% Basic hyperbolic functions

362 function out = sinh(self)

363 out = bicomplex([],[]);

364 out.z1=cosh(self.z1).*cos(self.z2);

365 out.z2=sinh(self.z1).*sin(self.z2);

366 end

367

368 function out = cosh(self)

369 out = bicomplex([],[]);

370 out.z1=sinh(self.z1).*cos(self.z2);

371 out.z2=cosh(self.z1).*sin(self.z2);

372 end

373

374 function out = tanh(self)
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375 out = sinh(self)./cosh(self);

376 end

377

378 function out = coth(self)

379 out = cosh(self)./sinh(self);

380 end

381

382 function out = sech(self)

383 out = 1./cosh(self);

384 end

385

386 function out = csch(self)

387 out = 1./sinh(self);

388 end

389

390 function out = atan2(self)

391 sizes = size(self);

392 ang = zeros(sizes);

393

394 for i = 1:prod(sizes)

395 sr.type = ’()’;

396 sr.subs = {i};

397 if real(self.z1(i)) > 0;

398 ang(i) = atan(self.z2(i)./ self.z1(i));

399 elseif real(self.z1(i))<0 && real(self.z2(i))>= 0;

400 ang(i) = atan(self.z2(i)./self.z1(i))+pi;

401 elseif real(self.z1(i))<0 && real(self.z2(i))<0;

402 ang(i) = atan(self.z2(i)./self.z1(i))-pi;

403 elseif real(self.z1(i))==0 && real(self.z2(i))> 0;

404 ang(i) = pi/2;

405 elseif real(self.z1(i))==0 && real(self.z2(i))< 0;

406 ang(i) = -pi/2;

407 else

408 error(’atan(0,0) undefined’);

409 end

410 end

411 out = ang;

412 end

413 function out = sqrt(self)

414 out = self.^0.5;

415 end

416 end

417

418 methods % Functions for returning the imaginary and real parts

419 function out = real(self)

420 out = real(self.z1);

421 end

422 function out = imag1(self)

423 out = imag(self.z1);

424 end

425 function out = imag2(self)

426 out = real(self.z2);

427 end

428 function out = imag12(self)
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429 out = imag(self.z2);

430 end

431 end

432 end

433

434 %% Utility functions

435

436 function [self,other] = isbicomp(self,other)

437 % Verifies that self and other are bicomplex, or converts them to bicomplex

438 % if possible

439

440 if isa(self,’double’)

441 self = bicomplex(self,zeros(size(self)));

442 elseif ~isa(self,’bicomplex’)

443 error(’Self is not of class bicomplex’)

444 end

445

446 if isa(other,’double’)

447 other = bicomplex(other,zeros(size(other)));

448 elseif ~isa(other,’bicomplex’)

449 error(’Other is not of class bicomplex’)

450 end

451

452 end

453

454 function zeta = mat2bicomp(mat)

455 % Takes the matrix representation and returns the corresponding bicomplex

456 sizes = size(mat);

457 str1 = ’1:sizes(1)/2,1:sizes(2)/2’;

458 str2 = ’sizes(1)/2+1:end,1:sizes(2)/2’;

459 for i = 3:length(sizes);

460 str1 = [str1 sprintf(’,1:sizes(%i)’,i)];

461 str2 = [str2 sprintf(’,1:sizes(%i)’,i)];

462 end

463 str1 = sprintf(’mat(%s)’,str1);

464 str2 = sprintf(’mat(%s)’,str2);

465 z1 = eval(str1);

466 z2 = eval(str2);

467 zeta = bicomplex(z1,z2);

468 end
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B.2 Testing the performance of bicomplex differentiation

1 m = 25;

2

3 syms x

4 f_symbolic = [x*x*x*x*cos(x)/(x+(exp(x)))];

5 f_fnhandle = @(x) [x*x*x*x*cos(x)/(x+(exp(x)))];

6

7 time_sym = zeros(1,m);

8 time_bcx = zeros(1,m);

9

10 cnt = 1;

11 for k = 1:10

12

13 h = 0.0001;

14 for i = 1:m

15 x0 = rand(i);

16 tic

17 res = imag1(f_fnhandle(bicomplex(x0+ones(size(x0))*h*1i,...

18 zeros(size(x0)))))/h;

19

20 time_bcx(i) = (cnt-1)/cnt*time_bcx(i)+toc/cnt;

21 end

22

23 for i = 1:m

24 x0 = rand(i);

25 tic

26 res = subs(diff(f_symbolic),x,x0);

27 time_sym(i) = (cnt-1)/cnt*time_sym(i)+toc/cnt;

28 end

29

30 cnt = cnt + 1;

31 end

32

33 close all

34 hold on

35 plot([1:m].^2,time_bcx,’r’)

36 plot([1:m].^2,time_sym,’b’)

37 hold off

38
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B.3 Calculating the first-order derivative of sin(x)/x

1 %% Complex differentiation

2

3 % Function to be differentiated at x0

4 x0 = pi/2;

5 F = @(x) sin(x)./x;

6

7 dF_cmplx = @(x,h) imag1(F(bicomplex(x+1i*h,0)))/h; % multicomplex

8 dF_cdiff = @(x,h) (F(x+h) - F(x-h))/(2*h); % central difference

9

10 % Exact solution:

11 exact_sol = -4/pi^2;

12

13 % Calculating the residuals

14 hs = 2.^(-(1:50)’);

15 errs = zeros(50,2);

16

17 for k = 1:50

18 errs(k,1) = abs(dF_cmplx(x0,hs(k))-exact_sol);

19 errs(k,2) = abs(dF_cdiff(x0,hs(k))-exact_sol);

20 end

21

22 % Plotting the residuals

23 close all

24 loglog(hs,errs)

25 set(gca,’XDir’,’Reverse’)

26 legend(’complex step’,’central difference’,’location’,’southwest’)

27 xlabel(’step size h’)

28 ylabel(’error’)
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B.4 Function to calculate the Jacobian matrix

1 function jacobian = bcjacobian(f,x0,h)

2 m = length(f);

3 n = length(x0);

4 jacobian = zeros(m,n);

5

6 for j = 1:n

7 for k = 1:m

8 ej = eye(n); ej = ej(:,j);

9 bicomplex(x0+h*ej*1i,zeros(size(x0)))

10 jacobian(j,k) = imag1(f(bicomplex(x0+h*ej*1i,zeros(size(x0)))))/h;

11 end

12 end

13 end
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B.5 Calculating the second-order derivative of sin(x)/x

1 %% Complex differentiation

2

3 % Function to be differentiated at x0

4 x0 = pi/2;

5 F = @(x) sin(x)./x;

6

7 dF_cmplx = @(x,h) imag12(F(bicomplex(x+i*h,h)))/(h^2); % multicomplex

8 dF_cdiff = @(x,h) (F(x+h) - 2*F(x) + F(x-h))/(h^2);% 2nd order central diff

9

10 % Exact solution:

11 exact_sol = 16/pi^3 - 2/pi;

12

13 % Calculating the residuals

14 hs = 2.^(-(1:50)’);

15 errs = zeros(50,2);

16

17 for k = 1:50

18 errs(k,1) = abs(dF_cmplx(x0,hs(k))-exact_sol);

19 errs(k,2) = abs(dF_cdiff(x0,hs(k))-exact_sol);

20 end

21

22 % Plotting the residuals

23 close all

24 loglog(hs,errs)

25 set(gca,’XDir’,’Reverse’)

26 legend(’complex step’,’central difference’,’location’,’southwest’)

27 xlabel(’step size h’)

28 ylabel(’error’)

36



B MATLAB SCRIPTS

B.6 Function to calculate the Hessian matrix

1 function hessian = bchessian(f,x0,h)

2 n = length(x0);

3 hessian = zeros(n,n);

4

5 for j = 1:n

6 for k = 1:n

7 ej = eye(n); ej = ej(j,:);

8 ek = eye(n); ek = ek(k,:);

9 hessian(j,k) = imag12(f(bicomplex(x0+h*ek*1i,h*ej)))/h^2;

10 end

11 end

12 end
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