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1 INTRODUCTION

1 Introduction

This report is the result of the project in the course ’Advanced Simulation’. It investigates the possibility of
calculating derivatives of functions using complex differentiation. The report will give a brief introduction to
the theoretical background before presenting the algorithm. A large part of the report consists of examples
to illustrate the described algorithm and theory. Though it is not necessary to read this part to understand
the theory, it is recommended to do so to understand how it works in practice. Finally, a bicomplex class

was written in MATLAB and can be found in the appendix.



2 MOTIVATION

2 Motivation

One of the most commonly used methods to numerically estimate the differential of a continuous function are
so-called finite difference methods. These methods are based on a truncated version of the Taylor expansion
series around a point. Consider a holomorphic function f, i.e. f is infinitely differentiable. The Taylor series
for f around the point x( is then
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Assuming that A is small such that all higher order terms can be neglected, the equation can be rearranged
to yield the forward difference

(4)
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Where h is the step size and O is the truncation error, which stems from the truncation of the Taylor series
after the first term. The accuracy of the method can be improved by choosing a central difference scheme.
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It seems like an arbitrary high accuracy can be achieved by choosing a sufficiently small h. Indeed, the
definition of the derivative is closely related to the forward difference. Letting h go to zero, one obtains the
definition of the derivative

i O(h?) (6)
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However, rounding error is introduced when using floating point arithmetic. In order to understand why this
occurs, one must understand how numbers are stored in computers. In most computers today, numbers are
stored as double-precision floating-point variables, meaning that each number is represented by 8 bytes or 64
bits of memory. Out of those 64 bits, 1 is used to store the sign (+ or -), 11 are used to store the exponent
and the remaining 52 give the significand precision. Due to special encoding, one additional bit is available
for the significand precision. 53 bits of storage in binary equal to 53log;;(2) = 15.96 unique characters in
decimal.
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Figure 1: Storage of numbers as 64-bit floating-point variables. Illustration taken from Wikipedia Com-
mons: http://upload.wikimedia.org/wikipedia/commons/a/a9/IEEE_754_Double_Floating_ Point_
Format.svg
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2 MOTIVATION

In other words, two numbers which are identical in the first 16 significant digits will be stored as the same
value inside the computer memory. Subsequent subtraction will yield zero as the result. The smallest dis-
tinguishable difference between two numbers is called the machine precision ¢, and typically has between 15
and 17 significant digits after the exponent.

This rounding error increases as h approaches e, which is why the selection of the step size is subject
to limitations when using finite difference methods to estimate differentials. The finite difference methods
are said to be ill-conditioned.

This means that a balance between the rounding error and the truncation error has to be found in or-
der to get the highest accuracy. The optimal value for h depends on the nature of f, but in general a value
close to h = x - /€ gives a decent initial estimate.

2.1 Alternatives to finite difference methods

Finite difference methods are often used because they are relatively easy to implement. But due to their
ill-conditioned nature, alternative methods have to be used when high precision is desired.

One common approach is to use automatic differentiation (AD). AD exploits the fact that all functions
can be expressed as a combination of basic mathematical operations such as subtraction, addition, multi-
plication etc. By storing the derivative of each variable alongside its value, one can automatically calculate
the derivatives of each following variable by repeatedly applying the chain rule to these basic mathematical
operations. The disadvantage of this method is that is computationally intensive in terms of computation
speed and storage. Each additional higher-order derivative requires the computation and storage of an ad-
ditional value. Many AD tools are limited to first or second-order derivatives.

Another approach is to calculate the exact derivatives using symbolic calculations. Symbolic differentia-
tion is very similar to manual differentiation, using a set of rules to obtain the derivative. Mathematica and
Maple are examples of commercial software which use symbolic mathematics. The major drawback of this
method is the high computation cost.

Complex differentiation is another alternative. It is not widely used due to various reasons, mainly the
availability of good AD tools. However, some authors claim that complex differentiation has several advan-
tages over AD [2]. The Cauchy integral method is already used to calculate higher-order derivatives in some
communities. The Cauchy integral method will be briefly introduced in Section [3.2 The main focus of this
report is the (multi)complex step method.



3 COMPLEX DIFFERENTIATION

3 Complex differentiation

3.1 First order derivatives

Squire and Trapp first described an alternative method for calculating first-order derivatives without round-
off error in 1998[6]. Their method is reminiscent of the the finite different method, but is extended to the
complex plane. By stepping in the complex plane instead of in the real plane, round-off error can be elimi-
nated.

Assume that f is a holomorphic function, i.e. is infinitely differentiable. The Taylor series of f evaluated at
the complex point xg + ih is then:

2
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The imaginary part is
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Assuming that h is small, the series can be truncated after the first term, yielding the following expression
for the first order derivative

e = 20T

Since the above expression does not contain a subtraction, the rounding error is eliminated. The algorithm
is thus well-behaved.

(10)

Note that this method only can be used to calculate the first derivative of a function. Trying to solve
for the second or third derivative of f will not give any improvement in accuracy because the expression
contains a difference term, resulting in rounding error.

For examples on how to apply this method, see Section Section and Section in Appendix
Al



3 COMPLEX DIFFERENTIATION

3.2 n-th order derivatives using Cauchy’s integral theorem

Lyness and Moler first used complex numbers to calculate approximations of higher-order differentials of
functions in 1967[3].

Cauchy’s integral formula states that

f(z) ,
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The proof is straightforward
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The last inequality results from the estimation lemma. Furthermore, it was used that
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Assuming that f is analytic on a domain D containing the closed curve C, then it can be shown that all the
derivatives of f can be calculated as

o) = 2 ;i (f“ (12)

2mi z — zg)"tl

Using the trapezoidal rule, the contour integral can be approximated as [4]
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This method also contains a subtraction of two equally sized terms, which might lead to rounding error
when h becomes too small. But unlike the finite difference method, h is not the only parameter that can be
adjusted in order to obtain higher accuracy. By selection a larger m, i.e. by using more points to approximate

the contour integral, a higher accuracy can be achieved as well.
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4 Multi-complex step differentiation

The disadvantage of using Cauchy’s integral theorem for calculating higher order differentials is the large
number of function evaluations required to obtain high accuracy when calculating the contour integral. Even
then, the method is somewhat prone to rounding error due to the summation term in Equation [I3]

An alternative method for calculating higher-order derivatives can be found by extending Squire and Trapp’s
complex step method into the multicomplex domain. The multicomplex domain contains more than one com-
plex plane, as the name suggests. Since one complex dimension is often sufficient to solve most problems,
little attention has been paid to multicomplex mathematics. Price did substantial work on this field in the
70’s, and his work will be used as a foundation to derive the multicomplex step method described in the
next sections.

4.1 Definition of multicomplex numbers

Consider a multicomplex number ¢,. The set of multicomplex numbers of order n is [5]

(Cn = {Cn = Cn—l,l + Cn—1,2 Sy Cn—l,la Cn—l,Q € (Cn—l} (14)

Each complex space can be defined in terms of variables from the underlying complex space. For example,
the bicomplex space is defined as

Co={G=2+2i2:21,22 € Cy} (15)

space is defined as

)
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From insertion it follows that C™ also can be defined as
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Through recursive insertion, it follows that every multicomplex number in C" can be represented by 2"
parameters in R

Basic mathematical operations in C" are similar to operations in C'. Mathematical operations in C? and
C3 are explained in great detail in Price’s book [5]. Generalizations in C" are also included.

4.1.1 Matrix representation of multicomplex numbers

A useful tool for doing basic mathematical operations with complex numbers is the so-called matrix repre-
sentation of complex numbers. The monocomplex number z can be represented by its matrix Z

7= [xl _”“"2} (18)
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Basic mathematical operations such as addition, subtraction, multiplication and division of complex numbers
are easily performed on their matrix representations. For example, multiplication of two complex numbers
can be done as
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One necessary property of the matrix representation is that the square of the complex unit vector equals to

one.
2 [0 -1 0 -1 _|-1 0

E_[1 0}'{1 o}_{o —1] (22)
These matrices can also be used for addition, subtraction and division.

The equivalent of these complex matrix represenations can be defined for multicomplex numbers as well.
Using the introduced notation, the matrix representation of the multicomplex number (,, can be written as

Cn—l 1 _Cn—l 2
Z, = ' ’ 23

" |:<n—1,2 Cn—l,l ( )
Due to the recursive nature of multicomplex numbers, one can use block matrices to represent higher dimen-
sional multicomplex numbers as matrices of multicomplex number of lower dimensionality. For example, the
matrix representation of the bicomplex number (5 can be written as

ry —T2 —T3 T4
7 — z1 —Z2| _ |®2 X1 —T4 —I3 (24)
2 zZ9 Z1 I3 —XT4 X1 —X9

T4 I3 T2 I

As can be seen, the matrix representation of an n-dimensional multicomplex number has is of size 2™ x 2™
when written in terms of parameters in R.

4.1.2 Some mathematical functions in C"

In addition to the basic mathematical operators, functions of multicomplex numbers must also be defined.
Just like functions of complex numbers can be rewritten in terms of their real and imaginary parts, multi-
complex numbers must be rewritten in terms of their real and imaginary parts. Let us for example take the
cosine function. It can be shown that

cos(z) = cos(xy)cosh(zg) — isin(xq )sinh(zs) (25)

A very similar relationship is valid for numbers in higher complex dimensions

c0s((p) = cos(Cp—1,1)cosh(Cn—1,2) — insin(Cy—1,1)sinh(¢y—1,2) (26)

Most functions are easily adapted to take multicomplex arguments. Problems arise when treating inverse
functions, however. Due to their non-injective nature, it is difficult to define them in an unambiguous way.
The inverse trigonometric functions, for example, have multiple solutions depending on the quadrant of the
complex input. The situation is even worse for bicomplex numbers, in which case there will be different
solutions depending on which octant the input is in. Caution must be taken when trying to implement these
functions.
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4.2 Complex step differentiation algorithm

With the definition of multicomplex numbers, one can now easily extend Squire & Trapp’s complex step
method to the multicomplex domain in order to calculate higher order derivatives. This idea was first ex-
plored by Lantoine et al. in 2012 [2].

Assume that f is a holomorphic function, i.e. is infinitely differentiable. The Taylor series of f around
the real point xy can be written as:

(i1h + ... +1i,h)?

flxo+ith+...4+i,h) = f(zo)+ (ith+ ... +inh) f (zo) + 5 [ (wo) +...  (27)
k
_ ;0 ;z’l-h I (28)

The term (Z?zl i - h)k can be expanded using the multinomial theorem, which states that

n

m

ki+kot...+kpym=n 1<i<m

where the binomial coefficient is defined as

n n!
=— 30
(khkg,...,km) k1lko!l.. k! (30)
The n-th order derivative is the only derivative containing the unique term A" (H? il), as can be seen from
the multinomial theorem. In that case ky = ko = ... = k,, = 1. Let us define the function <., which

retrieves the part of the multicomplex number corresponding to zon € R.

Zom = X (sg ( (S (Gn) )> =31 (C) (31)

It follows that the n-order derivative can be calculated as

Sim (f (zo+ > pyh- Zk))
hn

£ (o) = (32)

which is very similar to the first order approximation derived by Squire & Trapp. By making A sufficiently
small, any accuracy can be obtained, down to machine precision.

10
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5 Implementation of bicomplex numbers in MATLAB

The multicomplex step differentiation method is easily implemented in MATLAB once a multicomplex class
has been constructed. Due to the recursive nature of multicomplex numbers, it is in theory only necessary
to construct the class once. All subsequent classes can be defined recursively from the first class, inheriting
all its methods. A bicomplex class was therefore written in MATLAB as a proof of concept. The script that
implements the bicomplex class is attached in Appendix

In theory it should have been possible to inherit the methods and properties of the built-in complex class
in MATLAB, but since built-in classes are not available for reading or writing, the author was not able
to do this. Instead, all necessary methods were defined manually. This includes common operations such
as initiation, indexing and concatenation, but also mathematical operations such as addition, subtraction,
multiplication and division.

Functions such as the trigonometric and the exponential functions were overloaded manually using simi-
lar definitions as for monocomplex numbers. It was first attempted to overload all functions automatically
by looping through all functions contained in the symbolic toolbox. The functions were split up into one
real and three complex parts (corresponding to i1, i2 and i1i2) through two sets of substitution. But this
method was not well suited due to the symbolic toolbox struggling to split some functions into their real
and imaginary parts, resulting in calls to the ’imag’ and ’real’-function in the final expressions. The sym-
bolic toolbox also failed to overload inverse functions such as arcsin and arccos, since it chose one particular
solution resulting in &1 = &2 = 0 for all bicomplex numbers.

The bicomplex class seems to work fine for the mentioned simple functions, but inverse functions have
not yet been implemented due to the authors lacking mathematical knowledge. However, the framework is
built and it should be relatively easy to implement the missing functions in the future.

The bicomplex class was written in such a way that it can easily be adopted for tricomplex or multicomplex
numbers.

6 Comparison to other differentation methods

6.1 Automatic differentiation

It was difficult to find an AD package for MATLAB which is easy to use, so it was unfortunately not possible
to compare the speed of the bicomplex differentation method with the speed of AD. It is expected that
multicomplex differentiation and AD have similar performances since both techniques are based on breaking
down the code to elementary operations. The idea behind AD is to apply the chain rule to each elementary
operation in the code, whereas the idea in complex differentiation is to treat all variables as complex vari-
ables and perform elementary operations on them. This means that for both techniques, the computation
time is expected to be related to the complexity of the differentiated function. For very large systems, the
chain rule becomes increasingly computationally intensive. The same is true for complex differentiation.
Consider the multiplication of two multicomplex numbers, for example. Since multiplication is done on the
matrix representations of the numbers, the computation time scales quadratically with the size of the system.

The memory cost of multicomplex differentiation is comparable to the memory cost of AD for first or-
der derivatives, but becomes increasingly larger for higher order derivatives. This is because each variable
is associated with n values in AD, whereas each variable is associated with n? values in multicomplex dif-
ferentiation. In the case of bicomplex numbers and second order derivatives, multicomplex differentiation is
twice as memory intensive as AD.

According to Lantoine, his MultiComplex Step method outperformed ADO02, which is a AD method written

for Fortran 90 [2]. Lantoine’s MultiComplex Step method was outperformed by TAPENADE, but unlike
ADO02 it transforms the source program and is limited to first-order derivatives. Judging by Lantoine’s results,

11



6 COMPARISON TO OTHER DIFFERENTATION METHODS

it could seem that multicomplex differentiation methods on average perform on a par with AD methods.
However, Lantoine also states that his results should only be used as an indication, as the performance is
varying from problem to problem.

6.2 Symbolic differentiation

Symbolic differentiation is known to be relatively slow and memory intensive. Expressions for the derivative
are known to grow exponentially, which can lead to problems in the execution of the code [IJ.

It was attempted to write a script that tests how the computation time of a problem increases with in-
creasing complexity. The following equation was evaluated for a range of x.

xsin(z)

T+ e¥

flz) =

x is a square matrix with random values. The size of x increases with each iteration. Figure shows the
obtained results.

o
—
e

=
.
b2

=
=

0.08

0.06

Awerage computation time

0.04

0.02

|:| 1 1 1 1 1 | ]
1] 100 200 300 400 500 GO0 o0
Mumber of variables

Figure 2: Computation time for calculating the first order derivative as a function of the number of variables.
Symbolic differentiation in blue, multicomplex differentiation in red.

As can be seen from the figure, it seems as if the multicomplex differentiation method is much better suited
for calculating the derivative of large systems, such as 25x25 matrices. Both methods seem to increase
linearly with increasing number of variables. It could look like multicomplex differentiation is independent
of input size, but this is not true. Figure shows the average computation time for the multicomplex
differentiation method.

12
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Figure 3: Computation time for calculating the first order derivative as a function of the number of variables
using the multicomplex differentiation method.

As can be seen from the figure, the method still works exceptionally well for 150x150 systems with close to
25000 variables. It was attempted to compute the derivative of the same system using the symbolic toolbox,
but the attempt was terminated after several seconds without a result.

The good performance of the multicomplex method can be attributed to the fact that MATLAB is optimized
to perform large matrix calculations. Since the multicomplex method consists of elementary operations on
matrix representations, it will be very fast. The script that was used to obtain the above figures is attached

in Appendix

However, the huge performance difference could also be due to implementation errors or other factors that
were not considered here. One should therefore take the results with a pinch of salt.

6.3 Why is multicomplex differentiation not widely used?

The results from the previous sections indicate that multicomplex differentiation is a viable alternative to the
most commonly used differentiation methods. Some possible reasons as to why multicomplex differentiation
is not widely used include:

e Multicomplex numbers remain uncharted territory in mathematics, and only a few publications exist on
the subject. Lantoine’s paper on multicomplex differentiation was published in 2012, which is several
decades later than when AD was first introduced.

e Automatic differentiation is based on a very simple principle and is easy to implement. A lot of research
has been done to develop AD software and optimize it.

13
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7 Conclusion and suggestions for future work

Multicomplex step differentiation is a good alternative to other differentiation methods if high precision is
desired and small step sizes are necessary. Implementation of multicomplex numbers is relatively easy in
MATLAB, though inverse functions still pose some problems.

The performance seems to be satisfactory. According to literature, multicomplex differentiation is a vi-
able alternative to automatic differentiation. Results from tests give reason to believe that multicomplex
differentiation outperforms MATLAB’s built-in symbolic differentiation function from the Symbolic Toolbox.

Suggestions for future work:
e Implement the missing functions, including the inverse functions.
e Generalize the class such that it works for higher-dimensional complex numbers.

e Do an in-debth comparison of advantages and disadvantages of the most commonly used differen-
tiation methods, including variations of finite difference methods, AD, symbolic differentiation and
(multi)complex differentiation.

14
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A EXAMPLES

Appendices

A Examples

To demonstrate the practical applications of the described complex step differentiation methods, the first
and second order derivatives of the two functions fi(z) =  and fo(x) = % will be calculated manually
in the following sections. It will also be shown how to use the extend the (multi)complex step method to

calculate the Jacobian and Hessian matrices.

A.1 Example 1: First order derivative of f(z) = 1
Consider the function

f) =~ (33)

The derivative of the function is to be estimated at a point x¢ using the method described in Section [3.1]
Defining

z=x9+1h (34)
Substituting into Equation [33]
1 1
= = 35
fO=t= (35)

The function can be split up into its real and imaginary parts by remembering the relationship between the
modulus and the complex conjugate

z-Z=|z|? (36)
where the complex conjugate of z is defined as
zZ=ux9—th (37)
and the modulus of z is defined as
2] = \/af + I? (38)
Equation [35| can thus be written as
z a2+ h?
Following the method from Section the first order derivative can now be calculated as
/ S(f (zo +ih)) —1
~ = 40
f'(x0) v PR (40)

It can be seen that the expression does not contain any subtractions, and does therefore not suffer from
rounding errors. Taking the limit as h goes to zero yields the exact function

16
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A.2 Example 2: First order derivative of f(x) = sin(z)

x

Now consider the function

sin(z
o) = 2 (12)
T
Substituting z = x¢ + ih into the expression gives
sin(z)  sin(xg + ih)
1e) == o + ih (43)
The expression for f(z) can be split into its real and complex parts by remembering that
sin(z) = sin(zg + ih) = sin(xg)cosh(h) + i - sin(zg)sinh(h) (44)
Such that
—_ih
f(z) = <§3+22> - (sin(zg)cosh(h) + i - sin(zg)sinh(h)) (45)
0

The first order derivative can be expressed as

S(f(wo +ih))  wocos(x0) I _ pin(zy) ceshth)

! ~ = 46
The derivative of f is found by letting the limit of h go to zero
cos(x sin(x
() = ) olw) (47)

x €T

Again, no subtraction of equally sized numbers occurs, eliminating the round-off error.

A.2.1 Comparison to the finite difference method

The above function was evaluated using MATLAB. The attached script in Appendix evaluates the
derivative of sin(z)/x at o = §

Evaluated at the point zg = 3, the exact solution is

Fwo) =~

Running the attached script, the absolute errors between the exact value and the estimated values are
calculated for different step sizes. The resulting graph is shown in Figure Note that the central
difference method starts failing at a step size of approximately h = 10~°. This value corresponds somewhat
well with the rule of thumb saying that h = z+/e ~ 107% gives the best trade-off between rounding error
and truncation error. It can be seen from the figure that values larger than h = 1072 result in increasing
rounding error. For very small step sizes close to the machine precision, the method breaks down completely.

17
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error
5
T

complex step
central difference

10° 107 10° 10 107 107 10" 107 107 10
step size h

Figure 4: Absolute errors between exact value and estimated value of the first order derivative of S”;ﬂ
evaluated at wg = 5

A.3 Example 3: Using complex step differentiation to find the Jacobian matrix

Given a system of equations f(x) where x = [z, 22, ..., x,]T, then the Jacobian matrix of the system can be
defined as

3151(") 31(;10‘) . %(x)
0fa(x)  0f2() . 0falx)
J=| "’?" (43)
Ofm(0)  Ofmx) . Ofm(x)
oz Oxo 0Ty
Using the complex step differentiation method, the Jacobian matrix can be approximated as
f1 (x + ihel) f1 (X + iheg) cee f1 (X + Zhen)
fo(x+ihey)  fa(x+ihes) ---  fa(x+ihey) | 1
Jr= S . . i . n (49)
: : - : h
fm(x+iher) fa(x+ihes) - fo(x+ihe,)

Where e; is defined such that I = [ej,eq, ..., €;,]

A function is written in MATLAB to calculate the Jacobian matrix for a system of equations. The script is
attached in Appendix [B-4]
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A.4 Example 4: Second order derivative of f(z) =1

According to the derived rules in Section the second order derivative of f(z) = L can be calculated as

/() = = - (50)

Where 1o is defined as

S12(C2) = Co,a (51)
and
G = (Co + o2+ i1+ Co3 - i2 + Coa i1 - d2) (52)
0,1, €0,2,C0,3, Co,a € R
In other words, &5 is the function which retrieves the term associated with both i1 and i».
Substituting x — (3 = x + i1h + i2h into the expression gives
1
_ 53
f(Cz) $+i1h+i2h ( )
i1h) — ioh
_ (et i ) — iz (54)
(x4 i1h)? + h?
((ﬁ + Zlh) — Zgh
= — = 55
22 4+ 2i1ha (55)
_ (x4 i1h —igh) (x2 — 2i1hx) (56)
x4 + 4h2z?
3 + 2zh? —22h —22h 2xh?
_ . . . 57
x4 + 4h222 + x4 + 4h222 t x4 + 4h222 2+ xt + Ap2g2 1" (57)
It was used that _
_ 1 C
(=P - === 58
= =rp (5%)
Comparison of Equation 71| with Equation [52] gives
3 + 2zh?
Joa(z) = At (59)
22h
foa@) =~ (60)
z%h
_ 1
f0,3($) 24+ Ah272 (61)
2xh?
— el 2
foa(x) % + 4h2z2 (62)
(63)

With fo;(z) being related to f2(¢2) in a similar way to how (y; is related to (2, namely being the part of
the function which gives the corresponding imaginary term.

The derivative of f(z) = 1 can now be calculated from Equation

_ Swa(f(wo +irth+i2h))  fou 2x
) = h2 T h2 T 1At 4h2g? (64)

Taking the limit as h goes to zero gives the exact solution

F'(z) = lim (2“7> _ 2 (65)

h—0 \ 2% + 4h222 3
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Alternatively, one can use the definition on the right hand side of Equation [50| to calculate the derivative.

(a)‘-i—llh) —ish —h
Y = [ 7 = S
S2(f(¢2)) = Sz ( 22 + 2i hx 2 + 2i1hx (66)
_ —h(z? — 2i1hx)
= e (67
weoy L S1(Se(f(wo +i1th +i2h))) 2z
[(x) ~ h2 T oxt 4 4h222 (68)

The two methods are equivalent, though the first approach might be more efficient if implemented into a
computer program. This is because fewer function calls are required (only one call to $12 instead of two
calls to &7 and J9)

It should also be noted that Equation [71]| contains terms associated with all the lower order derivatives.

In fact, substitution of x — ¢, into a function f(z) will not only provide the n'" derivative, but also all
lower order derivatives from f(”*l)(x) to f(l)(m)‘
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A.5 Example 5: Second order derivative of f(x) = Sinw(m)
Substituting x — (2 = x +i1h + i2h into f(x) = M gives
sin(x + ilh + Zgh)
= 69
f(CQ) $+i1h+i2h ( )
(70)
The result from the previous section can be utilized
% + 2zh? —z2h —z%h 2zh? . . )
e = <x4 e o aee T d a2 T et | sin@ Fah tish) - (71)

The term sin(x + i1h + izh) can be expanded using the following rules

sin(xy + x9i) = sin(zq)cos(xai) + cos(zq)sin(xai) (72)
= sin(zq)cosh(zz) + i - cos(xq)sinh(xz) (73)

cos(x1 + x2i) = cos(zy)cos(xzi) — sin(zq)sin(xai) (74)
cos(xq)cosh(xy) — i - sin(z )sinh (o) (75)

(76)

The relationships can be derived using basic trigonometric identities and the relationship between the trigono-
metric functions and the exponential function.

Let g = sin(z + i1h + i2h). Then g can be written as
g((2) = sin(z+i1h +i2h) (77)

sin(z + i1 h)cosh(h) + igcos(z + i1 h)sinh(h) (78)
= sin(z)cosh?(h) + iycos(z)sinh(h)cosh(h) 4 iscos(z)cosh(h)sinh(h) — iyis - sin(z)sinh?(h) (79)

f(¢2) can now be rewritten as a sum of the different complex terms

212 sin(x) + 22 cosh(h)? sin(z) + hz sinh(2 k) cos(z)
F(&) = 4h%x+ 23

. ( h cosh(2h) sin(z) — w
o 4h? + 22

) (h cosh(2 h) sin(z) — W) (80)
— iy

4 h? + 2

2 h? sin(z) + z? 52111(91) _ 2’ cosh(22h) sin(@) . sinh(2h) cos(z)
4h?z + 23

+ i1l

The function is now on the form

f(¢2) = fo1(x) + foz(z)in + foz(x)ia + fo.a(x)iria

81
f()J(J?)IR%R ( )
The second derivative of f(z) = % can now be approximated as
Si2(f(z +i1h +i2h)) _ foa(x)
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Letting the limit of h go to zero, the exact expression is obtained

() = }ngb fo,;;(x) _ _x2 sin(z) — 2 51;13(35) + 22 cos(z)

(83)

As the calculations from this section show, things get out of hands rather quickly, with calculations being
difficult to do even for relatively simple functions.

[2]

A.5.1 Comparison to the finite difference method

The above function was evaluated using MATLAB. The attached script in Appendix evaluates the

derivative of sin(z)/x at o = §

Evaluated at the point zg = 3, the exact solution is

f//(xo) _ E _ z

w7

Running the attached script, the absolute errors between the exact value and the estimated values are
calculated for different step sizes. The resulting graph is shown in Figure Note that the central
difference method starts failing at a step size of approximately h = 1073. For very small step sizes close
to the machine precision, the method breaks down completely and gives oscillatory behaviour. It can also
be observed that for relatively large step sizes, it seems as if the central difference method outperforms the
multicomplex step method. This could either be an implementation error or be related to the remaining
h-terms in the expression, which somehow decrease the accuracy.

10" ;

error
3
T
|

complex step
central difference

step size h

Figure 5: Absolute errors between exact value and estimated value of the second order derivative of sin(z)

xr
evaluated at zg = 3
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A.6 Example 6: Using multicomplex step differentiation to calculate the Hes-

sian matrix

Given the multivariable equation f(x) where x = [z, 22, ...
defined as
fx)  9Pf(x)
Ox? 0102
’f(x)  f(x)
H= 02023 03
Pf(x)  Df(x)
0z, 0xq Ox, 0T

,z,]T, then the Hessian matrix of f can be

af*(x)
O0x10x,
9% f(x)

9x2.81n (84)

O f(x)

2
ox?

Using the multicomplex step differentiation method, the Hessian matrix can be approximated as

f(X+i1hel —|—i2he1) f(X+’i1h€2 —|—i2he1)
f(x—l—hhel +i2heg) f(x+i1hes —l—igh(%g)

H~ S

f(X+’i1hel +12hen) f(X+’i1h€2 +12hen)

Where e; is defined as the unit vector such that I = [eq,es, ...

f(X + ilhen + ighel)
f(x+irhe, +izhes) | 1
. )

f(x+i1he, +izhe,)

,€n)

A function is written in MATLAB to calculate the Hessian of a function. The script is attached in Ap-

pendix
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B MATLAB SCRIPTS

B MATLAB scripts

B.1 Bicomplex class

classdef bicomplex
%% BICOMPLEX(z1,z2)
% Creates an instance of a bicomplex object.

% zeta = zl + j*z2, where zl and z2 are complex numbers.

properties
zl, z2
end

methods % Initialization
function self = bicomplex(zl,z2)
if nargin "= 2
error (’Requires exactly 2 inputs’)
end
if “isequal(size(zl),size(z2))
error (’Inputs must be equally sized’)
end
self.zl
self.z2
end

zl;
z2;

end
methods % Basic operators

function mat = matrep(self)
mat = [self.zl,-self.z2;self.z2,self.z1];
end

function display(self)
disp(’z1:7)
disp(self.zl)
disp(’z2:7)
disp(self.z2)

end

function out = subsref(self,index)
if stremp(’ ()’ ,index.type)
out = bicomplex([1,[1);
out.zl = builtin(’subsref’,self.z1,index);
out.z2 = builtin(’subsref’,self.z2,index);
elseif strcmp(’.’,index.type)
out = eval([’self.’,index.subs]);
end
end

function out = subsasgn(self,index,value)
if stremp(’ ()’ ,index.type)
out = bicomplex([1,[1);

out.zl = builtin(’subsasgn’,self.zl,index,value);

out.z2 = builtin(’subsasgn’,self.z2,index,value);
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elseif strcmp(’.’,index.type)

if ~“(strcmp(index.subs,’z1’) || strcmp(index.subs,’z2’))

error(’No such field exists.

else
if strcmp(index.subs,’z1’)
z_1 = value;

z_2 = self.z2;

else
z_2 = value;
z_1 = self.zl;

end

out = bicomplex(z_1,z_2);

end
end
end

function out = horzcat(self,varargin)
z_1 [self.z1];
z_2 [self.z2];
for i = l:length(varargin)

Use z1 and z2 instead’)

% Horizontal concatenation

[7,tmp] = isbicomp([],varargin{il});
z_1 = [z_1,tmp.z1];
z_2 = [z_2,tmp.z2];

end

out = bicomplex(z_1,z_2);

end

function out = vertcat(self,varargin)
z_1 [self.z1];
z_2 [self.z2];
for i = l:length(varargin)

% Vertical concatenation

[7,tmp] = isbicomp([],varargin{il});

z_1 = [z_1;tmp.z1];
z_2 = [z_2;tmp.z2];
end
out = bicomplex(z_1,z_2);
end

function out = plus(self,other)

[self,other] = isbicomp(self,other);

zeta = matrep(self)+matrep(other);
out = mat2bicomp(zeta);
end

function out = minus(self,other)

[self,other] = isbicomp(self,other);
zeta = matrep(self)- matrep(other);

out = mat2bicomp(zeta);
end

function out = uplus(self)

out = self;
end

25
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function
out
end
function
[sel
if ~
else
else
end
out
end
function

[sel
if s

else

else

else

out = uminus(self) % Unary minus
= —1xgelf;

out = mtimes(self,other) % Multiplication
f,other] = isbicomp(self,other);

prod(size(self)==size(other)) && numel(self) ==

mat = matrep(self.*other);

if “prod(size(self)==size(other)) && numel(other) ==
mat matrep(self.*other);

mat = matrep(self)*matrep(other) ;

= mat2bicomp (mat) ;

out = times(self,other) % Elementwise multiplication
f,other] = isbicomp(self,other);
ize(self) == size(other)
sizes = size(self);
z_1 zeros(sizes);
z_2 = zeros(sizes);
for i = 1l:prod(sizes)
sr.type = *()7;
sr.subs = {i};
tmp = subsref (self,sr)*subsref (other,sr);
z_1(i) = tmp.z1;
z_2(i) = tmp.z2;
end
if numel(self) ==
sizes = size(other);
z_1 zeros(sizes);
z_2 = zeros(sizes);
for i = 1l:prod(sizes)
sr.type = "0 7;
sr.subs = {i};
tmp = self*subsref (other,sr);
z_1(1) = tmp.z1;
z_2(i) = tmp.z2;
end
if numel (other) ==
sizes = size(self);
z_1 = zeros(sizes);
z_2 = zeros(sizes);
for i = 1l:prod(sizes)
sr.type = "0 7;
sr.subs = {i};
tmp = subsref (self,sr)*other;
z_1(1) = tmp.z1;
z_2(i) = tmp.z2;
end

error (’Matrix dimensions must agree’)
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end
out = bicomplex(z_1,z_2);
end

function out = mrdivide(self,other) % Division
if numel(other) == 1 && numel (other) ~=numel(self)
mat = matrep(self./other);
else
[self,other] = isbicomp(self,other);
mat = matrep(self)/matrep(other);
end
out = mat2bicomp(mat);
end

function out = rdivide(self,other) % Elementwise division
[self,other] = isbicomp(self,other);
if size(self) == size(other)
sizes = size(self);
z_1 = zeros(sizes);
z_2 = zeros(sizes);
for i = l:prod(sizes)

sr.type = "0 7;
sr.subs = {i};
tmp = subsref (self,sr)/subsref (other,sr);
z_1(i) = tmp.z1;
z_2(i) = tmp.z2;
end
elseif numel(self) ==
sizes = size(other);
z_1 = zeros(sizes);
z_2 = zeros(sizes);
for i = l:prod(sizes)
sr.type = "0 7;
sr.subs = {i};
tmp = self/subsref (other,sr);
z_1(i) = tmp.zl;
z_2(i) = tmp.z2;
end
elseif numel(other) ==
sizes = size(self);
z_1 = zeros(sizes);
z_2 = zeros(sizes);
for i = l:prod(sizes)
sr.type = "0 7;
sr.subs = {i};
tmp = subsref (self,sr)/other;
z_1(i) = tmp.zl;
z_2(i) = tmp.z2;
end
else
error (’Matrix dimensions must agree’)
end
out = bicomplex(z_1,z_2);
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end

function out = power(self,other)
sizes = size(self);
z_1 zeros(sizes);
z_2 zeros(sizes);

for i = 1:length(z_1(:))
sr.type = () 7;
sr.subs = {i};
r = modc(subsref (self,sr));
theta = argc(subsref (self,sr));
z_1(i) = r~other*cos(other*theta);
z_2(i) = r-other*sin(other*theta);
end
out = bicomplex([1,[1);
out.zl = z_1;
out.z2 = z_2;

end

function out = mpower(self,other)
sizes = size(self);
z_1 = zeros(sizes);
z_2 = zeros(sizes);

for 1 = 1:length(z_1(:))
sr.type = "0 7;
sr.subs = {i};
r = modc(subsref (self,sr));
theta = argc(subsref (self,sr));
z_1 = r~other*cos(other*theta);
Z_2 = r-other*sin(other*theta);
end
out = bicomplex([],[1);
out.zl = z_1;
out.z2 = z_2;

end

function dims = size(self)
dims = size(self.zl);
end

function n = numel(self)
n = numel(self.z1);
end

function out = modc(self)
out = sqrt(self.zl1.72 + self.z2.72);

end

function out = norm(self)

% Elementwise power

% Elementwise power

% Returning size of array

% Returning number of elements

% Complex modulus

% Norm

out = sqrt(real(self.zl1)."2 + real(self.z2).72 +
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imag(self.z1) .72 + imag(self.z2).72);

end

function theta = argc(self) % Complex argument
theta = atan2(self);

end

function out = 1t(self,other) % Less than, self < other

out = false;
if real(self.zl) < real(other.zl)
out = true;
end
end

function out = gt(self,other) % Greater than, self > other
out = false;
if real(self.zl) > real(other.zl)
out = true;
end
end

function out = le(self,other) % Less than or equal, self <= other
out = false;
if real(self.zl1l) <= real(other.z1)
out = true;
end
end

function out = ge(self,other) 7, Greater than or equal, self >= other
out = false;
if real(self.zl) >= real(other.zl)
out = true;
end
end

function out = eq(self,other) % Equality, self other
out = false;
if self.zl == other.zl && self.z2 == other.z2
out = true;
end

end

function out = ne(self,other) % Not equal, self "= other
out = true;
if self.zl == other.zl && self.z2 == other.z2
out = false;
end
end

end
methods % Mathematical functions

%% Exponential function and logarithm
function out = exp(self) % Exponential
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out = bicomplex([1,[1);

out.zl=exp(self.zl).*xcos(self.z2);

out.z2=exp(self.zl) .*sin(self.z2);
end

function out = log(self)
out = bicomplex([1,[]1);
out.zl=log(modc(self));
out.z2=argc(self) ;

end

%% Basic trigonometric functions
function out = sin(self)
out = bicomplex([],[1);
out.zl=cosh(self.z2).*sin(self.zl);
out.z2=sinh(self.z2) .*cos(self.zl);
end

function out = cos(self)
out = bicomplex([1,[1);
out.zl=cosh(self.z2).*cos(self.zl);
out.z2=-sinh(self.z2) .*sin(self.z1);
end

function out = tan(self)
out = sin(self)./cos(self);
end

function out = cot(self)
out = cos(self)./sin(self);
end

function out = sec(self)
out = 1./cos(self);
end

function out = csc(self)
out = 1./sin(self);
end

%% Basic hyperbolic functions

function out = sinh(self)
out = bicomplex([1,[1);
out.zl=cosh(self.zl) .*cos(self.z2);
out.z2=sinh(self.z1) .*sin(self.z2);

end

function out = cosh(self)
out = bicomplex([1,[1);
out.zl=sinh(self.z1).*cos(self.z2);
out.z2=cosh(self.zl) .*sin(self.z2);
end

function out = tanh(self)
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end

out = sinh(self)./cosh(self);
end

function out = coth(self)
out = cosh(self)./sinh(self);
end

function out = sech(self)
out = 1./cosh(self);
end

function out = csch(self)
out = 1./sinh(self);
end

function out = atan2(self)
sizes = size(self);
ang = zeros(sizes);

for i = l:prod(sizes)
sr.type = "0 7;
sr.subs = {i};
if real(self.z1(i)) > O;

ang(i) = atan(self.z2(i)./ self.z1(i));
elseif real(self.z1(i))<0 && real(self.z2(i))>= 0;
ang(i) = atan(self.z2(i)./self.z1(i))+pi;
elseif real(self.z1(i))<0 && real(self.z2(i))<0;
ang(i) = atan(self.z2(i)./self.z1(i))-pi;
elseif real(self.z1(i))==0 && real(self.z2(i))> O0;

ang(i) = pi/2;

elseif real(self.z1(i))==0 && real(self.z2(i))< 0;

ang(i) = -pi/2;

else
error(’atan(0,0) undefined’);
end
end
out = ang;
end

function out = sqrt(self)
out = self.”0.5;
end

function out = real(self)
out = real(self.zl);

end

function out = imagl(self)
out = imag(self.zl);

end

function out = imag2(self)
out = real(self.z2);

end

function out = imagl2(self)

methods % Functions for returning the imaginary and real parts
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out = imag(self.z2);
end
end
end

%% Utility functions

function [self,other] = isbicomp(self,other)
% Verifies that self and other are bicomplex, or converts them to bicomplex

% if possible

if isa(self,’double’)

self = bicomplex(self,zeros(size(self)));

elseif “isa(self,’bicomplex’)

error(’Self is not of class bicomplex’)

end

if isa(other, ’double’)

other = bicomplex(other,zeros(size(other)));

elseif “isa(other,’bicomplex’)

error (’Other is not of class bicomplex’)

end
end

function zeta = mat2bicomp(mat)

% Takes the matrix representation and returns the corresponding bicomplex

sizes = size(mat);

stril ’1:sizes(1)/2,1:sizes(2)/27;
str2 ’sizes(1)/2+1:end,1:sizes(2)/27;
for i = 3:length(sizes);

strl = [strl sprintf(’,1:sizes(%i)’,1)];
str2 = [str2 sprintf(’,1:sizes(%i)’,1)];

end

strl = sprintf(’mat(%s)’,strl);
str2 = sprintf(’mat(%s)’,str2);
z1l = eval(strl);

z2 = eval(str2);

zeta = bicomplex(z1,2z2);

end
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B.2 Testing the performance of bicomplex differentiation
m = 25;
syms x

f_symbolic = [xkx*x*x*cos(x)/(x+(exp(x)))];
f_fnhandle = Q@(x) [x*x*x*x*cos(x)/(x+(exp(x)))];

time_sym = zeros(l,m);
time_bcx = zeros(1,m);

cnt = 1;
for k = 1:10
h 0.0001;
for i = 1:m
x0 = rand(i);
tic

res = imagl(f_fnhandle(bicomplex(x0+ones(size(x0))*h*1i,...

zeros(size(x0)))))/h;

time_bcx(i) = (cnt-1)/cnt*time_bcx(i)+toc/cnt;
end

for i = 1:m
x0 = rand(i);
tic
res = subs(diff (f_symbolic),x,x0);
time_sym(i) = (cnt-1)/cnt*time_sym(i)+toc/cnt;
end

cnt = cnt + 1;
end

close all

hold on
plot([1:m]."2,time_bcx,’r’)
plot([1:m]."2,time_sym,’b’)
hold off
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B.3 Calculating the first-order derivative of sin(x)/x

%% Complex differentiation

% Function to be differentiated at xO
x0 = pi/2;
F = @(x) sin(x)./x;

dF_cmplx
dF_cdiff

@(x,h) imagl(F(bicomplex(x+1i*h,0)))/h;
@(x,h) (F(x+h) - F(x-h))/(2*h);

% Exact solution:
exact_sol = -4/pi~2;

% Calculating the residuals
hs = 2.7(-(1:50)’);
errs = zeros(50,2);

for k = 1:50
errs(k,1) = abs(dF_cmplx(x0,hs(k))-exact_sol);
errs(k,2) = abs(dF_cdiff(x0,hs(k))-exact_sol);
end

% Plotting the residuals
close all

loglog(hs,errs)
set(gca,’XDir’, ’Reverse’)

% multicomplex
% central difference

legend(’complex step’,’central difference’,’location’,’southwest’)

xlabel(’step size h’)

ylabel(’error’)
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B.4 Function to calculate the Jacobian matrix

end

function jacobian = bcjacobian(f,x0,h)
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m = length(f);
n = length(x0);
jacobian = zeros(m,n);
for j = 1:n
for k = 1:m
ej = eye(n); ej = ej(:,3);
bicomplex (x0+h*ej*1i,zeros(size(x0)))
jacobian(j,k) = imagl(f(bicomplex(x0+h*ej*1i,zeros(size(x0)))))/h;
end
end
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%% Complex differentiation

% Function to be differentiated at xO
x0 = pi/2;
F = @(x) sin(x)./x;

dF_cmplx
dF_cdiff

% Exact solution:
exact_sol = 16/pi~3 - 2/pi;

% Calculating the residuals
hs = 2.7(-(1:50)’);
errs = zeros(50,2);

for k = 1:50
errs(k,1) = abs(dF_cmplx(x0,hs(k))-exact_sol);
errs(k,2) = abs(dF_cdiff(x0,hs(k))-exact_sol);
end

% Plotting the residuals
close all

loglog(hs,errs)
set(gca,’XDir’, ’Reverse’)

@(x,h) imagl2(F(bicomplex(x+i*h,h)))/(h"2);
0(x,h) (F(x+h) - 2*¥F(x) + F(x-h))/(h"2);% 2nd order central diff

B.5 Calculating the second-order derivative of sin(x)/x

% multicomplex

legend(’complex step’,’central difference’,’location’,’southwest’)

xlabel(’step size h’)
ylabel(’error’)
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B.6 Function to calculate the Hessian matrix

function hessian = bchessian(f,x0,h)
n = length(x0);
hessian = zeros(n,n);

ej = eye(m); ej = ej(j,:);
ek = eye(n); ek = ek(k,:);

end
end

end

37

hessian(j,k) = imagl2(f(bicomplex(xO+h*ek*1i,h*ej)))/h"~2;
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