
Advanced Process Simulation

CFD - Analysis of numerical solvers in openFOAM Extend 4.0
Written by Amos Fang

December 01, 2017

Computational Fluid Dynamics

• Difference between FEM and FVM

• Describe the linear solvers used for mesh computation

• Difference between the coupled and segregated solver

• Walkthrough the steps for pUCoupled solver using the BlockLduMatrix class

• Test the convergence for the coupled solver in openFoam Extend which uses the fvMatrix class

• Run convergence results comparison for the SIMPLE and pUCoupled foam solver cases

1

heinz
Note
The report appears fragmented.

The concepts are not well understood.

Finite volume and finite element methods are not explained well. A figure would have helped. A link to basics is necessary.

Quantities must be defined. There is some unclear use of quantities - accumulation vs density vs flux

source term -- where does it come from

balances vs conservation

There are some principle issues here.

1 Computational Fluid Dynamics

Computational fluid dynamics is the use of computer-based simulations to analyze the profile of a system
involving fluid flow, heat transfer or other associated phenomena. CFD analysis provides an understanding
of the system of interest without having to carry out physical experiments that may incur high costs.

In this report, the goal is to compare two solver approaches to achieve solution convergence, with regard
to time taken and performance (number of iterations required). The coupled solvers are available only in
openFOAM Extend.

1.1 Numerical Solutions of partial differential equations

There are many commercial software packages used in CFD simulations, each employing different numerical
approaches to perform computational modelling. The classification of these modelling tools are [1],

1) Finite Element Method

2) Finite Volume Method

3) Finite Difference Method

4) Spectral Methods

As the objective for each numerical modelling project differs widely from each other, different techniques
as listed, are used to discretize the governing equations. Both the finite difference and spectral methods
are out of scope in this discussion. The focus will be on the finite volume method.

Popular commercial software packages such as ANSYS Fluent uses the finite element method (FEM) for
computer-aided simulations. The open source C++ toolbox used to develop customized numerical solvers,
openFOAM, uses the finite volume method. The distinguishing feature of openFOAM is the object-oriented
programming and operator overloading feature available in C++ to allow custom solvers be built.

1.2 Finite Volume Method

The accurate approximation of solutions to the governing equations describing the system is the goal of
every simulation effort. Solution discontinuities lead to loss of numerical accuracy in traditional finite
difference approaches. Accuracy is affected in domains where there are discontinuities in the differential
equations and the solution does not hold (Figure 1).

In contrast with finite difference methods which make pointwise approximation at grid points after dis-
cretizing the PDEs, the finite volume method takes the integral form of the governing equations. The
domain is divided into grid cells and the flux quantity q is approximated by taking the total integral of q
over the cell volume (3D) or area (2D) to obtain the average q̄ value. The average q̄ is modified for each
time step by the flux through the edges of each grid cell [2].

∂

∂t

∫
Ω

q dx = f(q(x2, t))− f(q(x1, t)) (1)

2

heinz
Note
Generally based on balancing conserved quantities around a volume. Thus accumulation is net inflow, latter involving an integration over the surface of the volume.

heinz
Highlight
??? -- I think this is the density of the balance quantity and not the flux.

Figure 1: Discontinuity in numerical solutions (Source: Wolfram Mathematics)

where the grid cell region Ω ∈ [x1, x2]. q is the flux quantity that is dependent on both location and time.

In the 3D simulation case, the Reynolds Transport equations may be written for the arbitrary conserved
flux quantity q.

∂

∂t

∫
Ω0

q(x, t) dx =
∂

∂t

∫
Ω

q(x, t) dx +

∫
∂Ω

q(x, t) u · n dσ (2)

where x is the 3D domain space, σ is the surface area of the grid cell, Ω0 and ∂Ω0 are the cell volume
and boundary respectively at time 0. By divergence theorem, the outward flux through closed surface in
Equation (2) may be written as a volume integral of the divergence of the flux in the closed region.

∂

∂t

∫
Ω0

q(x, t) dx︸ ︷︷ ︸
S

=
∂

∂t

∫
Ω

q(x, t) dx +
�
�
�∂

∂t

∫
Ω

∇ · q(x, t) dx ��dt (3)

This conservation principle is applied to obtain numerical solutions in the finite volume method. If the
flux quantity is not conserved, the equation must also contain source terms [2]. In Equation (4), the left
hand side term is the source term, followed by the transient and divergence term on the right hand side.

By shrinking the control volume Ω→ 0, the differential form of the conservation law is obtained.

S =
∂q(x, t)

∂t
+∇ · q(x, t) (4)

In the finite volume method, the cell averaged quantity qi(t) is determined,

qi(t) =
1

Vi

∫
Vi

q(x, t) dx (5)

3

heinz
Note
Representation as surface integral is more fundamental.

heinz
Highlight

heinz
Note
Ooops what does that mean ? either there is a source term or there is not.

Distinguish clearly between balance and conservation principle. !

heinz
Highlight
Here it is not flux !

For cells with fixed number of faces, the volume averaged conservation law is 1,

∂qi
∂t

+
1

Vi

∑
p

qp · n =
1

Vi

∫
Vi

S dx (6)

1.3 C++ Implementation in openFOAM

All libraries in openFOAM and openFOAM Extend are written in C++.

Use of template metaprogramming is prevalent in openFOAM in performing operations on fields and ma-
trices. Metaprogramming means a program within “a program that manipulates code” [3]. A natural
question is what is the benefit of metaprogramming in CFD computations? For matrix setup in the solver,
function templates are written so that the same function can be used on different data types, because the
matrix setup in openFOAM can be a vector, matrix or tensor with different sizes. This cannot be achieved
with traditional programming that uses function overloading for different operation scenarios. Function
overloading used in normal programming styles may be impractical with the variability and possibly large
number of operations used in openFOAM computations.

In general, template metaprogramming expands on traditional programming styles to include custom data
type for functions and classes. Metaprogramming styles allow computation to be done at run-time instead
of compile time. To illustrate a widely used example in openFOAM, a technical explanation of how a
wrapper class tmp<class-name> reduces peak memory for large tensorial objects is found in the link 2.
This may theoretically reduce computational burden by implementing safe memory management algorithm
using tmp<function-or-class-name>.

Experienced foamers have advised users against making changes to the existing templates due to unknown
dependencies. This is due to the lack of openFOAM Extend documentation and template revisions with
each new update. But one with knowledge of these templates, could build a custom matrix structure for
new solver algorithms. In the 2012 project report written by Klas Jareteg from Chalmers, he has created
a pUCoupledFoam solver using the BlockLduMatrix block coupled matrix structure with the full
code found in the Appendix C of his report [4]. This solver has, however, not been able to run on the
latest version of openFoam Extend 4.0 because the code has not been maintained with software version
updates over the years.

The solver is found in “foam-extend-4.0>applications>solver>SOLVER NAME”. The example
for simplefoam is illustrated. Together with the solver main routine “simplefoam.c”, the equation
files such as “UEqn.h” and other files used by simplefoam are located in this directory. The code snippet
for equation input in “UEqn.h” for the momentum equation, Equation (7), is shown in this example,

∂U

∂t
+∇ · φU−∇ · ν∇U = −∇p

ρ
(7)

1Discretization of FVM - https://perswww.kuleuven.be/˜u0016541/Talks/finvol.pdf
2http://openfoamwiki.net/index.php/Snip_tmp_explained

4

heinz
Highlight
this is flux and n is normal direction.

heinz
Highlight
while here it is density

https://perswww.kuleuven.be/~u0016541/Talks/finvol.pdf
http://openfoamwiki.net/index.php/Snip_tmp_explained

1 tmp<fvScalarMatrix> UEqn
2 (
3 fvm::ddt(U)
4 + fvm::div(phi,U)
5 - fvm::laplacian(nu,U)
6 ==
7 - fvc::grad(p)
8);

In this solver case, fvm and fvc is the namespace for the finite volume method and calculus respectively.
fvm is used for implicit discretization methods whereas fvc refers to explicit discretization typically used to
solve the source terms. In this example, within the finite volume method namespace, the functions ddt(),
div() and lapacian() are used for the respective mathematical operations. The fvc::grad() func-
tion is used for treatment of the source term.

Namespaces are widely used in openFOAM to prevent variable or function name conflicts 3. For example,
both vector3::zero and vector4::zero use the variable zero but they are not the same as the
vector3 is a zero vector size 3 and size 4 for vector4. This should not be confused with class member
function specification in object oriented programming given that both cases use the :: operator.

2 Numerical solution methods in openFOAM Extend

In a given CFD problem, the system is described by one or many governing equations. The number of
unknown variables must be equal to the number of governing equations for a solution to be found for the
problem. In the computational domain, each positional coordinate is a cell in a discretized mesh where
the solution is found. The goal of the CFD exercise is to compute the solution vector for the cell meshes
generated for the case geometry.

In the traditional direct solution method, a matrix with non-zero diagonals A is solved via a linear equation
system Ax = b 4 [5]. For each diagonal value in aij where i = j, the value of xj is approximated until
the solution converges. The Jacobi method solves for the ith equation in the matrix system in (9). This is
done iteratively until all the variables in xj is solved. For this discussion, aP is used to denote the diagonal
element in the A matrix which is the coefficient of the point cell of interest.

n∑
j=1

aijxj = bi (8)

apxp = b (9)

For almost all CFD cases, the system is more complicated and is described by multiple governing equa-
tions5. Thus, there are more than one unknown variables to be solved for in each grid cell. Multiple matrix

3Slide 220 of C++ Introduction to openFOAM (http://www.tfd.chalmers.se/˜hani/kurser/OS_CFD_2010/
basicsOfC++.pdf)

4 The Jacobi Method - http://mathworld.wolfram.com/JacobiMethod.html
5also known as field equations

5

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/basicsOfC++.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/basicsOfC++.pdf
http://mathworld.wolfram.com/JacobiMethod.html

systems are used to solve these multiple equations. These matrix systems can either be implicit or explicit.
In the explicit case, the solution variables are independent of each other at that given time step tn. This
solution vector at tn is solved from that of the previous time step tn−1. For implicit systems, the variables
are dependent on each other at the given time step tn.

The momentum equation, as mentioned in Equation (7), has two unknown solution variables U and p. p
is linearly dependent on U, suggesting linear coupling in this equation.

∂U

∂t
+∇ · φU−∇ · ν∇U = −∇p

ρ
(10)

The continuity equation is,

∂ρU

∂t
+∇ · ρU = 0 (11)

2.1 Segregated Approach

In the segregated approach, one equation of the multiple matrix system is solved at a given time. Intu-
itively, that means the solution for the time step tn will have to be found by some kind of iteration scheme;
there are two unknowns that has to be solved for given time step tn and only one value is predicted at a time.

In the segregated case, two matrix systems for a point cell in a given mesh with two coupled unknown
variables are solved [4].

A(p) U = a (12)

B(U) p = b (13)

As there is implicit coupling between the two variables, solving both at once in a combined matrix system
in Equation (14) (sparse matrix) does not take into account of the coupling.

[
A(p) 0

0 B(U)

] [
U
p

]
=

[
a
b

]
(14)

This leads to the segregated solver algorithm. The iterative procedure is carried out for each time step tn.
In openFOAM, a solver algorithm known as SIMPLE (Semi-Implicit Method for Pressure Linked Equa-
tions) is used for pressure-velocity computation. According to Wikipedia, this algorithm was developed by
Prof Brian Spalding from Imperial College in the 1970s, and is widely used in numerical procedure of the
Navier Stokes Equation.

The following steps are taken to analyze the SIMPLE algorithm for the pressure and velocity coupled
equation system. The steps evaluated are taken with reference to the SIMPLE algorithm in openFOAM
6 [6].

6http://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM

6

http://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM

2.1.1 Momentum equation

1 tmp<fvVectorMatrix> HUEqn
2 (
3 fvm::div(phi, U)
4 + turbulence->divDevReff()
5);

The left-hand-side of the momentum equation (15) is defined, with addition of the turbulence modeling
structure.

H(U) = ∇ · φU +
∂U

∂t
−∇ · ν∇U (15)

Note that the H(U) reference from Section 2.1.5 is the discretized form of the momentum equation, where
it is a matrix.

2.1.2 Apply under-relaxation factor

1 const scalar UUrf = mesh.solutionDict().equationRelaxationFactor(U.name());

The under-relaxation factor for U is obtained from the user specified relaxationFactor parameter
in the fvSolution file in the case directory 7. Relaxation factors RF are used to maintain solution
stability. An under-relaxation factor of less than 1 may stabilize the solution and prevent overshooting
from the true solution8 [6]. UUrf for this case stands for velocity underrelaxation factor.

2.1.3 Solve the momentum equation

1 solve
2 (
3 relax(HUEqn(), UUrf)
4 ==
5 -fvc::grad(p)
6);

In this segment, pressure is computed. The left-hand-side of the momentum equation is solved for with
the relaxation factor such that it equates to the source term grad(p). Pressure is first predicted by
solving the momentum equation with a suitable relaxation factor.

2.1.4 Update boundary conditions for pressure

1 p.boundaryField().updateCoeffs();

The boundary conditions for p in each iteration are updated.

7A case directory is where the case files such as the mesh, controlDict and schemes for the given case are stored.
8Convergence and relaxation discussion post - (https://www.researchgate.net/post/Anyone_familiar_

with_convergence_and_under_relaxation_factors_in_fluent)

7

https://www.researchgate.net/post/Anyone_familiar_with_convergence_and_under_relaxation_factors_in_fluent
https://www.researchgate.net/post/Anyone_familiar_with_convergence_and_under_relaxation_factors_in_fluent

2.1.5 ap and Up are computed

1 // Prepare clean 1/Ap without contribution from under-relaxation
2 volScalarField rUA
3 (
4 "(1|A(U))",
5 1/HUEqn().A()
6);
7

8 // Store velocity under-relaxation point before using U for
9 // the flux precursor

10 U.storePrevIter();

Both Up and the coefficient ap are calculated for the next iteration step. UP corresponds to the velocity
field of the point cell and ap refers to the diagonal coefficient of the A matrix (p refers to the point cell
location).

apUp = H(U)−∇p (16)

Up =
H(U)

ap
− ∇p

ap
(17)

where the discretized momentum equation is 9,

H(U) = −
∑
n

anUn +
U

∆t︸︷︷︸
transient term

(18)

H contains the matrix coefficients of the neighbouring cells multiplied by their velocity components plus
the transient term, as written in Equation (18).

2.1.6 Interpolate to compute the field

1 U = rUA*HUEqn().H();
2 HUEqn.clear();
3 phi = fvc::interpolate(U) & mesh.Sf();
4 adjustPhi(phi, U, p);

The field φ is interpolated at each face of the cell mesh. rUA is the inverse of the coefficient A matrix for
the U equation system.

The discretized form of the continuity equation is expressed as the sum of flux through each face of the
cell mesh,

∇ ·Up =
∑
f

S ·Uf = 0 (19)

9note that H(U) is the linearized equation of H coefficient matrix times the U vector

8

heinz
Highlight
terminology is a nasty issue. Would probably be useful to generate a cross reference table.

where S is the normal vector at each face of the mesh and Uf is the velocity component at each face of
the mesh.

2.1.7 Interpolate to compute p in pressure correction equation (26)

1 // Non-orthogonal pressure corrector loop
2 while (simple.correctNonOrthogonal())
3 {
4 fvScalarMatrix pEqn
5 (
6 fvm::laplacian(rUA, p) == fvc::div(phi)
7);
8

9 pEqn.setReference(pRefCell, pRefValue);
10

11 pEqn.solve();
12

13 if (simple.finalNonOrthogonalIter())
14 {
15 phi -= pEqn.flux();
16 }
17 }

At this step, the continuity equation is substituted into the momentum equation.

Using the similar analogy of velocity at the point cell in equation (17), the velocity at each face (f) of the
mesh is,

Uf =

(
H(U)

ap

)
f

−
(
∇p
ap

)
f

(20)

Substitute (20) into (19),

Uf =

(
H(U)

ap

)
f

−
(
∇p
ap

)
f

(21)

∇ ·Up =
∑
f

S·
((

H(U)

ap

)
f

−
(
∇p
ap

)
f

)
= 0 (22)

9

heinz
Note
20 & 21 are the same !

∇ ·Up = ∇·
(
H(U)

ap

)
− ∇

2p

ap
= 0 (23)

∇·
(
H(U)

ap

)
− ∇

2p

ap
=
∑
f

S·
((

H(U)

ap

)
f

−
(
∇p
ap

)
f

)
(24)

⇒ ∇·
(
H(U)

ap

)
=
∑
f

S·
((

H(U)

ap

)
f

)
(25)

⇒ ∇
2p

ap
=
∑
f

S·
((

H(U)

ap

)
f

)
(26)

Solve the pressure equation (26) and repeat for the prescribed number of corrector steps to obtain the
corrected pressure value.

2.1.8 Continuity errors

1 # include "continuityErrs.H"

Compute for continuity errors.

2.1.9 Apply momentum correction

1 // Explicitly relax pressure for momentum corrector
2 p.relax();
3

4 // Momentum corrector
5 // Note: since under-relaxation does not change aU, H/a in U can be
6 // re-used.
7 U = UUrf*(U - rUA*fvc::grad(p)) + (1 - UUrf)*U.prevIter();
8 U.correctBoundaryConditions();

Compute the velocity for time step tn with the underrelaxation factor (27). A similar analogy for
rUA*fvc::grad(p) is like performing A−1b to find the solution at that iteration step. U - rUA*fvc::grad(p)
can be thought as the U correction term before the underrelaxation factor is applied. Correct the boundary
conditions velocity U with each iteration. The predicted U value at tn step is computed in Equation (27)

Un = RFU ∗Un + (1−RFU) ∗Un−1 (27)

2.1.10 Apply turbulence correction

1 turbulence->correct();

Similarly, correct the parameters for the turbulence property.

10

heinz
Note
from 23

2.1.11 Conclusion

Check for convergence and repeat from the beginning until convergence criteria are satisfied. The result
at each iteration for the variables, U and p, is the sum of the predicted and the corrected value.

There are three equations that are iterated to find the corrected values. They are the pressure, mo-
mentum(velocity) field and continuity equations. The correction of the turbulence parameters is more
complicated, and will not be discussed here. In general, iteration uses more computational steps to achieve
convergence and could use more computational time for some grids or cases [4]. In the next section, we will
understand how the coupled system may be described by a block coupled matrix form used in numerical
solution.

2.2 Block Coupled Approach

In the block coupled equation system, the solution vector is augmented to include all the variables in the
point cell and neighboring cells as arranged in Figure 2 10.

However, the matrix system in Equation (14) does not take into account of the implicit coupling between
the two unknown variables. In the block coupled approach, off-diagonal terms are introduced to remove
the explicit linear dependence of p from A and similarly for B. The resulting matrix system from Equation
(14) becomes,

[
A′ Ap

BU B′

] [
U
p

]
=

[
a
b

]
(28)

where a and b hold the source terms.

When finite volume discretization is applied on the block coupled equation set, the solution vector in the
point cell P is dependent on both the vector components in its cell as well as those of its neighboring cells
N .

aP xP +
∑
N

aN xN = b (29)

Alternatively, the block coupled matrix system for one point cell can be written as a tensorial product,

CP z = c (30)

[
cU,U cU,p

cp,U cp,p

]
P

[
U
p

]
=

[
b1

P

b2
P

]
(31)

10Block Coupled Simulations using openFOAM Slide 5- http://www.personal.psu.edu/dab143/OFW6/
Training/clifford_slides.pdf

11

http://www.personal.psu.edu/dab143/OFW6/Training/clifford_slides.pdf
http://www.personal.psu.edu/dab143/OFW6/Training/clifford_slides.pdf

P UP
W E

N

UN

S

Figure 2: 2D finite volume discretization of block coupled equation set

CP =

[
cU,U cU,p

cp,U cp,p

]
P

(32)

z =

[
U
p

]
(33)

For a block mesh with a point cell P, east E and west W cells, the full tensorial product can be written as,


. . .(

cU,U cU,p

cp,U cp,p

)
E

. . .

(
cU,U cU,p

cp,U cp,p

)
P

. . .

(
cU,U cU,p

cp,U cp,p

)
W

. . .





(
U
p

)
E

...(
U
p

)
P

...(
U
p

)
W


=



(
b1

E

b2
E

)
E

...(
b1

P

b2
P

)
P

...(
b1

W

b2
W

)
W


(34)

Both the tensor matrices of the North and South neighbouring cells are omitted in (34).

The momentum and continuity equations are restated for easy reference to the steps taken to solve the
block coupled system.

12

Momentum Equation

∂U

∂t
+∇ · φU−∇ · ν∇U = −∇p

ρ
(35)

Continuity Equation

∂ρU

∂t
+∇ · ρU = 0 (36)

The pUCoupledFoam in Foam Extend 4.0, as attached in the Appendix Section, 5.2 is broadly summarized
below,

• Initialize block matrix system, Up

• Find the explicit discretization (fvc) of the divergence of the field.

• Define the momentum equation like in the segregated solver case.

• Find the inverse of the A matrix for the U equation.

• openFOAM manages the convective term ∇ · φU implicitly with the fvm::SuSp(-divPhi, U)
term.

• When the momentum equation is constructed with the implicit terms, the relaxation factor is applied
and the equation is stored in the Up block matrix structure.

• The pressure parts of the continuity equation are set up and stored in the Up block matrix.

• Assemble and insert the coupling terms, ∇p and ∇ ·U.

• Solve the block coupled matrix system.

• The solution is transferred from the coupled solution vector to separate field and the boundary
conditions are updated.

• The turbulence parameters are solved for and correction is applied with each iteration.

• Repeat cycle until convergence is reached.

2.3 Caveats

The SIMPLE foam is one of the most basic solver built in openFOAM. Even SIMPLE foam is updated
with every version (last update was in 2016) and users should understand that the updates may affect their
project that is compiled in a previous version of openFOAM Extend (no technical support is provided for
software issues). Also, cases built with openFOAM may not work on openFOAM Extend as they are two
separate entities developing newer versions of their software. If required to work across software platforms,
cases will have to be reconfigured. Looking up at the openFOAM documentation on a particular solver can
provide some insights on the algorithm but may not give you an accurate understanding about how your
solver actually works in the current version. Also note there are no documentations for coupled solvers,
which were developed solely on openFOAM Extend.

13

1 // Two equivalent equations defined differently in openFOAM and openFOAM Extend
2

3 // openFoam
4 tmp<fvVectorMatrix> UEqn
5 (
6 fvm::div(phi, U) - fvm::laplacian(nu, U)
7);
8

9 // openFoam Extend
10 tmp<fvVectorMatrix> HUEqn
11 (
12 fvm::div(phi, U)
13 + turbulence->divDevReff()
14);
15

16 // In openFOAM Extend, turbulence -> divDevReff is
17

18 divDevReff(U) =
19 - fvm::laplacian(nuEff(), U)
20 - fvc::div(nuEff()*dev(fvc::grad(U)().T()))
21 }

For this example, ν is the kinematic viscosity of the fluid which appears in the diffusive term of the
momentum equation. The diffusive term is defined in the turbulence modeling function in openFOAM
Extend.

3 Relaxation Factor and Convergence Criteria

The following recommendations on the selection of relaxation factor and convergence criteria in this section
is obtained from ResearchGate [6].

3.1 Relaxation and Convergence Criteria

CFD numerical solvers typically use one or more iteration procedures to achieve the convergence crite-
ria. These iteration methods are also often used with relaxation procedures. Under-relaxation is used to
achieve numerically stable results when all the flow equations are implicitly coupled together. An example
of implicitly coupled equations is the coupled pressure and velocity variables found in the momentum and
continuity equations as explained in the earlier parts. Over-relaxation11 speeds up convergence of pressure-
velocity iteration to satisfy an incompressible flow condition.

There are three ways to define the convergence criteria in openFOAM, like in most CFD numerical solver
packages.

• Absolute tolerance: This is the minimum residual value we want to achieve at the end of the iterations.
Iterations stop when the residuals fall below this value.

11not covered in the scope of this report

14

• Relative tolerance: This tolerance is multiplied by the initial residual. When the current residual is
lower than this value, the solver stops iterating.

• Maximum number of iterations: This is the maximum number of iterations the solver will perform
regardless whether convergence is achieved.

3.2 Choosing Relaxation Criteria

The amount of over or under-relaxation can affect numerical computation results. Too much relaxation
can cause numerical instabilities, but too little could slow down convergence. A poorly chosen convergence
criteria can also lead to either poor results (too loose) or excessive computational times (too tight).

Finding the sweet spot for the relaxation factor and convergence criteria can be a difficult task in CFD sim-
ulations. There are no heuristics or formula to choose these parameters. Though the cases in openFOAM
have preset relaxation factors and convergence criteria, trial-and-error adjustments are usually made to
find the best results possible.

4 Applying pUCoupledFoam to pitzDaily tutorial case

To compare the performance of the 2D block coupled and segregated solvers, the pitzDaily case was
configured to run under as similar conditions as possible for both solvers.

Table 1: Segregated solver configuration

Foam Extend 4.0
simpleFoam

Solver (Pressure) PCG
Preconditioner (Pressure) DIC
Solver (Others) BiCGStab
Preconditioner (Others) DILU
Convergence criteria 1× 10−9

The coupled solver configuration implemented in Foam Extend 4.0 is compared with the version created
by Jareteg in 2012 in Table 2.

15

heinz
Highlight
not really a convergence criteria - a bottom out rule to break the loop.

Table 2: 2D block coupled solver configuration comparison

Foam Extend 4.0 2012 blockLduMatrix
pUCoupledFoam pUCoupledFoam

Solver GMRES GMRES
Preconditioner Cholesky Cholesky
Convergence criteria 1× 10−9 1× 10−9

Krylov space dimension (nDirections) 5 5
Max iterations 300 10
Underelaxation p 0.7 1.0
Underelaxation U 0.7 1.0
Underelaxation k 0.7 0.7
Underelaxation ε 0.7 0.7

As shown in Table 2, the max iterations for the current simulations of the pUCoupledFoam was attempted
at 300 for the GMRES solver, an increase from 10 used in the 2012 version because poor solution was
obtained for the block coupled solver when the iteration was kept at 10. This has resulted in significantly
more time taken than simpleFoam to complete the simulation cycle.

16

5 Appendix

5.1 pUCoupledFoam

The purpose of this section is to conduct a gap analysis of the pUCoupledFoam solver written by Klas
Jareteg in openFoam Extend 1.6 and the default pUCoupledFoam found in the latest release of openFoam
Extend 4.0.

Figure 3: Compiling Klas Jareteg pUCoupledFoam on openFoam Extend 4.0 produced errors

17

Figure 4: coupled solver directory in openFOAM Extend 1.6

It was also found that he developed the pUCoupledFoam during the period when the solver was not avail-
able in the openFOAM Extend 1.6. Therefore, this leads to the question whether the pUCoupledFoam
using the blockLdUMatrix he has built performs similarly as the default one now available in openFoam
Extend 4.0. This will require an analysis of how the pUCoupledFoam works in openFOAM Extend 4.0.
The following header files are added in pUCoupledFoam in Extend version 4.0.

1 #include "fvCFD.H"
2 #include "fvBlockMatrix.H"
3 #include "singlePhaseTransportModel.H"
4 #include "RASModel.H"

In the “fvBlockMatrix.H” file, the following header files were added.

1 #include "BlockLduSystem.H"
2 #include "fvMatrices.H"
3 #include "blockLduSolvers.H"

Therefore, the conclusion is that there is a high possibility that the block coupled approach used pUCoupledFoam
in Extend version 4.0 performs similarly as the one which was written in 2012 as both used the BlockLduSolvers
approach. However, Jareteg’s work in 2012 could be a source of inspiration for others to build new CFD
coupled solvers as his code follows through the steps of executing a coupled solver using more basic open-
Foam functions. It is difficult to use the existing default solvers as an analogy to create new ones as the
developer has in some cases, created very specialized and high level foam functions for a single purpose.
There are also parts in the default solver that are still under development or are not efficient or flexible.
Since the scope of this report is to conduct research on solvers in openFOAM, the technical aspects of
creating a new coupled solver shall not be pursued.

18

5.2 pUCoupledFoam from openFOAM Extend 4.0

1 /*---*\
2 ========= |
3 \\ / F ield | foam-extend: Open Source CFD
4 \\ / O peration | Version: 4.0
5 \\ / A nd | Web: http://www.foam-extend.org
6 \\/ M anipulation | For copyright notice see file Copyright
7 ---
8 License
9 This file is part of foam-extend.

10

11 foam-extend is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation, either version 3 of the License, or (at your
14 option) any later version.
15

16 foam-extend is distributed in the hope that it will be useful, but
17 WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 General Public License for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
23

24 Application
25 pUCoupledFoam
26

27 Description
28 Steady-state solver for incompressible, turbulent flow, with implicit
29 coupling between pressure and velocity achieved by fvBlockMatrix.
30 Turbulence is in this version solved using the existing turbulence
31 structure.
32

33 Authors
34 Klas Jareteg, Chalmers University of Technology,
35 Vuko Vukcevic, FMENA Zagreb.
36

37 *---*/
38

39 #include "fvCFD.H"
40 #include "fvBlockMatrix.H"
41 #include "singlePhaseTransportModel.H"
42 #include "RASModel.H"
43

44 // * //
45

46 int main(int argc, char *argv[])
47 {
48

49 # include "setRootCase.H"

19

50 # include "createTime.H"
51 # include "createMesh.H"
52 # include "createFields.H"
53 # include "initContinuityErrs.H"
54 # include "initConvergenceCheck.H"
55

56 Info<< "\nStarting time loop\n" << endl;
57 while (runTime.loop())
58 {
59 # include "readBlockSolverControls.H"
60 # include "readFieldBounds.H"
61

62 Info<< "Time = " << runTime.timeName() << nl << endl;
63

64 p.storePrevIter();
65

66 // Initialize the Up block system (matrix, source and reference to Up)
67 fvBlockMatrix<vector4> UpEqn(Up);
68

69 // Assemble and insert momentum equation
70 volScalarField divPhi
71 (
72 "divPhi",
73 fvc::div(phi)
74);
75

76 // Momentum equation
77 {
78 fvVectorMatrix UEqn
79 (
80 fvm::div(phi, U)
81 + turbulence->divDevReff()
82);
83

84 rAU = 1.0/UEqn.A();
85

86 // Insert the additional components. Note this will destroy the H and A
87

88 UEqn += fvm::SuSp(-divPhi, U) + divPhi*U;
89 UEqn.relax();
90

91 UpEqn.insertEquation(0, UEqn);
92

93 }
94 // Assemble and insert pressure equation
95

96 surfaceScalarField presSource
97 (
98 "presSource",
99 fvc::interpolate(rAU)*

100 (fvc::interpolate(fvc::grad(p)) & mesh.Sf())
101);

20

102

103 fvScalarMatrix pEqn
104 (
105 - fvm::laplacian(rAU, p)
106 ==
107 - fvc::div(presSource)
108);
109

110 pEqn.setReference(pRefCell, pRefValue);
111

112 UpEqn.insertEquation(3, pEqn);
113

114

115 // Assemble and insert coupling terms
116 {
117 // Calculate grad p coupling matrix. Needs to be here if one uses
118 // gradient schemes with limiters. VV, 9/June/2014
119 BlockLduSystem<vector, vector> pInU(fvm::grad(p));
120

121 // Calculate div U coupling. Could be calculated only once since
122 // it is only geometry dependent. VV, 9/June/2014
123 BlockLduSystem<vector, scalar> UInp(fvm::UDiv(U));
124

125 // Last argument in insertBlockCoupling says if the column direction
126 // should be incremented. This is needed for arbitrary positioning
127 // of U and p in the system. This could be better. VV, 30/April/2014
128 UpEqn.insertBlockCoupling(0, 3, pInU, true);
129 UpEqn.insertBlockCoupling(3, 0, UInp, false);
130 }
131

132

133 // Solve the block matrix
134 maxResidual = cmptMax(UpEqn.solve().initialResidual());
135

136 // Retrieve solution
137 UpEqn.retrieveSolution(0, U.internalField());
138 UpEqn.retrieveSolution(3, p.internalField());
139

140 U.correctBoundaryConditions();
141 p.correctBoundaryConditions();
142

143 phi = (fvc::interpolate(U) & mesh.Sf()) + pEqn.flux() + presSource;
144

145 # include "continuityErrs.H"
146

147 {
148 // Bound the pressure
149 dimensionedScalar p1 = min(p);
150 dimensionedScalar p2 = max(p);
151

152 if (p1 < pMin || p2 > pMax)
153 {

21

154 Info<< "p: " << p1.value() << " " << p2.value()
155 << ". Bounding." << endl;
156

157 p.max(pMin);
158 p.min(pMax);
159 p.correctBoundaryConditions();
160 }
161

162 // Bound the velocity
163 volScalarField magU = mag(U);
164 dimensionedScalar U1 = max(magU);
165

166 if (U1 > UMax)
167 {
168 Info<< "U: " << U1.value() << ". Bounding." << endl;
169

170 volScalarField Ulimiter = pos(magU - UMax)*UMax/(magU + smallU)
171 + neg(magU - UMax);
172 Ulimiter.max(scalar(0));
173 Ulimiter.min(scalar(1));
174

175 U *= Ulimiter;
176 U.correctBoundaryConditions();
177 }
178 }
179

180 p.relax();
181

182 turbulence->correct();
183 runTime.write();
184

185 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
186 << " ClockTime = " << runTime.elapsedClockTime() << " s"
187 << nl << endl;
188

189 // Check convergence
190 if (maxResidual < convergenceCriterion)
191 {
192 Info<< "reached convergence criterion: " << convergenceCriterion << endl;
193 runTime.writeAndEnd();
194 Info<< "latestTime = " << runTime.timeName() << endl;
195 }
196 }
197

198 Info<< "End\n" << endl;
199

200 return 0;
201 }

22

5.3 Configuration of fvSolution for simpleFoam

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | foam-extend: Open Source CFD |
4 | \\ / O peration | Version: 4.0 |
5 | \\ / A nd | Web: http://www.foam-extend.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object fvSolution;
14 }
15 // * //
16

17 solvers
18 {
19 p
20 {
21 solver PCG;
22 preconditioner DIC;
23 tolerance 1e-06;
24 relTol 0.01;
25 }
26 U
27 {
28 solver BiCGStab;
29 preconditioner DILU;
30 tolerance 1e-05;
31 relTol 0.1;
32 }
33 k
34 {
35 solver BiCGStab;
36 preconditioner DILU;
37 tolerance 1e-05;
38 relTol 0.1;
39 }
40 epsilon
41 {
42 solver BiCGStab;
43 preconditioner DILU;
44 tolerance 1e-05;
45 relTol 0.1;
46 }
47 R
48 {
49 solver BiCGStab;
50 preconditioner DILU;

23

51 tolerance 1e-05;
52 relTol 0.1;
53 }
54 nuTilda
55 {
56 solver BiCGStab;
57 preconditioner DILU;
58 tolerance 1e-05;
59 relTol 0.1;
60 }
61 }
62

63 SIMPLE
64 {
65 nNonOrthogonalCorrectors 0;
66

67 residualControl
68 {
69 p 1e-9;
70 U 1e-9;
71 "(k|epsilon)" 1e-9;
72 }
73 }
74

75 relaxationFactors
76 {
77 fields
78 {
79 p 0.7;
80 }
81

82 equations
83 {
84 U 0.7;
85 k 0.7;
86 epsilon 0.7;
87 R 0.7;
88 nuTilda 0.7;
89 }
90 }
91

92 cache
93 {
94 grad(U);
95 grad(p);
96 grad(k);
97 grad(omega);
98 grad(epsilon);
99 }

100 // *** //

24

5.4 Configuration of pUCoupledFoam fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | foam-extend: Open Source CFD |
4 | \\ / O peration | Version: 4.0 |
5 | \\ / A nd | Web: http://www.foam-extend.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object fvSolution;
14 }
15 // * //
16

17 solvers
18 {
19 Up
20 {
21 solver GMRES;
22 preconditioner Cholesky;
23

24 tolerance 1e-09;
25 relTol 0.0;
26

27 minIter 1;
28 maxIter 300;
29 nDirections 5;
30 }
31

32 p
33 {
34 solver PCG;
35 preconditioner DIC;
36 tolerance 1e-06;
37 relTol 0.01;
38 }
39 U
40 {
41 solver BiCGStab;
42 preconditioner DILU;
43 tolerance 1e-05;
44 relTol 0.1;
45 }
46 k
47 {
48 solver BiCGStab;
49 preconditioner DILU;
50 tolerance 1e-05;

25

51 relTol 0.1;
52 }
53 epsilon
54 {
55 solver BiCGStab;
56 preconditioner DILU;
57 tolerance 1e-05;
58 relTol 0.1;
59 }
60 R
61 {
62 solver BiCGStab;
63 preconditioner DILU;
64 tolerance 1e-05;
65 relTol 0.1;
66 }
67 nuTilda
68 {
69 solver BiCGStab;
70 preconditioner DILU;
71 tolerance 1e-05;
72 relTol 0.1;
73 }
74 }
75

76 blockSolver
77 {
78 convergence 1e-6;
79

80 pRefCell 0;
81 pRefValue 0;
82 }
83

84 fieldBounds
85 {
86 p -5e4 5e4;
87 U 500;
88 }
89 relaxationFactors
90 {
91

92 equations
93 {
94 p 0.7;
95 U 0.7;
96 k 0.7;
97 epsilon 0.7;
98 R 0.7;
99 nuTilda 0.7;

100 }
101 }

26

References

[1] T. Gerya, Introduction to Numerical Geodynamic Modeling. Cambridge University Press, 2010.

[2] R. J. LeVeque, “Finite Volume Methods for Hyperbolic Problems (Cambridge Texts in Applied Math-
ematics),” 2002.

[3] B. D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond. 2004.

[4] K. Jareteg, “Block coupled calculations in OpenFOAM,” p. 52, 2012.

[5] E. W. Black, Noel; Moore, Shirley; Weisstein, “Jacobi Method.”

[6] ResearchGate, “Convergence and Relaxation Factor in ANSYS FLUENT.”

27

	Computational Fluid Dynamics
	Numerical Solutions of partial differential equations
	Finite Volume Method
	C++ Implementation in openFOAM

	Numerical solution methods in openFOAM Extend
	Segregated Approach
	Momentum equation
	Apply under-relaxation factor
	Solve the momentum equation
	Update boundary conditions for pressure
	ap and Up are computed
	Interpolate to compute the field
	Interpolate to compute p in pressure correction equation (26)
	Continuity errors
	Apply momentum correction
	Apply turbulence correction
	Conclusion

	Block Coupled Approach
	Caveats

	Relaxation Factor and Convergence Criteria
	Relaxation and Convergence Criteria
	Choosing Relaxation Criteria

	Applying pUCoupledFoam to pitzDaily tutorial case
	Appendix
	pUCoupledFoam
	pUCoupledFoam from openFOAM Extend 4.0
	Configuration of fvSolution for simpleFoam
	Configuration of pUCoupledFoam fvSolution

