Optimization - Dakota

Haakon Eng Holck

Dakota

- Open source
- Interfacing with simulation models
- Multiple analysis capabilities

Parameter Studies

- Exploring the effects of parametric changes on the model
 - Smoothness
 - Multi-modality
 - Robustness
 - Nonlinearity
- Can cover the whole parameter space, or be centered around a point of interest
- Typically an introductory analysis

Design of Experiments

- Design of computer experiments are different than design of physical experiments
 - High dimensionality (many factors), no need for replicates
- Some computational models might have a long run time
- Response surface approximation
 - Surrogate models

Uncertaity Quantification

- Analyzing uncertainty propagation
- Brute force
 - Sampling inputs from a statistical distribution
 - Analyzing the distribution of model outputs

Optimization

- Optimization of some objective function based on model outputs
- Large collection of third-party algorithms
- Multiple types
 - Gradient based local methods
 - Derivative-free local methods
 - Derivative free global methods

Model Calibration

• Optimization methods specialized for least squares optimization

The Dakota/Model Interface

- Black box
- No direct interface to the simulation code
- Requires wrapper functions

Example Input File

```
environment,
            tabular_data
             tabular_data_file = 'rosen_opt.dat'
method,
            optpp_newton
            max_iterations = 50
             convergence_tolerance = 1e-4
model,
            single
variables,
            continuous_design = 2
            cdv_initial_point -1.2 1.0
            cdv_lower_bounds
                             -2.0 -2.0
            cdv_upper_bounds
                              2.0 2.0
            cdv_descriptor
                                'x1' 'x2'
interface,
            fork
            analysis_drivers = 'python.exe rosenbrock_bb_di.py'
            parameters_file = 'params.in'
            results_file = 'results.out'
responses,
            num_objective_functions = 1
            analytic_gradients
            analytic_hessians
```

Conclusion

- Useful for evaluating already implemented, complex models
- Multiple kinds of analyses
- Interface adds additional overhead
 - Both on the user- and computer side