
TKP4555 Advanced Simulation

Developing Graphical User
Interfaces in Python using
PyQt for Laboratory Use

Brittany Hall

November 30, 2017

Contents

Contents 1

List of Figures 2

1 Introduction 3

2 Experiment Description 5
2.1 General Description . 5

3 PyQt Modules 6
3.1 Introduction . 6
3.2 Widgets . 7

3.2.1 Window and Dialog Widgets 7
3.3 Layout Managers . 8

3.3.1 Style . 8
3.3.2 Layouts . 9
3.3.3 Example . 9

3.4 Threads, Signals and Slots . 10
3.4.1 Threads . 10
3.4.2 Signals and Slots . 11
3.4.3 Example . 12

4 Using QtDesigner 14
4.1 What is Qt Designer? . 14

4.1.1 pyuic4 . 15
4.2 Installing FellesLab Widgets 15

5 Two Tanks GUI 17
5.1 Installation . 17
5.2 How it Works . 18
5.3 Custom Widget Examples . 21

5.3.1 Start, Stop, Pause Buttons Widget 21
5.3.2 PID Controller Input Widget 25
5.3.3 Plotting Widget . 30

6 Conclusion 35

1

List of Figures

2.1 Illustration of the two tank experiment 5

3.1 Specifying window geometry in PyQt [3] 8
3.2 Simple example using layout and window widgets 10
3.3 Simple example of use of signals and slots 13

4.1 Blank Main Window template in QtDesigner 14
4.2 QtDesigner Widget Box with QFellesLabWidgets 16

5.1 Two tanks laboratory GUI . 18
5.2 Open and closed valves, respectively 18
5.3 GUI Manual Mode . 19
5.4 GUI Automatic Mode . 19
5.5 State space illustration of start, pause and stop buttons 20
5.6 Start, Pause and Stop button widget 21
5.7 Controller GUI . 26
5.8 Illustration of real-time plotting utilities 31

2

Chapter 1

Introduction

Software development is a huge industry in the western world and is esti-
mated to be worth over US $407.3 billion [9]. One sub-sector of the software
industry is the development of graphical user interfaces (GUIs). A GUI al-
lows users to interact with electronic devices through graphical icons and
visual indicators instead of using the command line. GUIs were introduced
to make computers more user friendly since the command-line interface has
a large learning curve. Users perform actions in a GUI by direct manipu-
lation of graphically elements. GUIs can be developed for many different
capabilities. Commonly used operating systems utilize GUIs: Windows, ma-
cOS, Ubuntu, etc [4]. In this report, we focus on the use of GUIs to control
experimental setups in a laboratory.

Constructing GUIs from scratch requires a large knowledge of program-
ming and significant time. This is why some software has been developed to
help users create GUIs faster and require less programming knowledge. One
such software is LabVIEW; LabVIEW is a relatively well known commer-
cially available software for applications that require test, measurement, and
control with rapid access to hardware and data [5]. It advertises itself as a
software that helps simplify hardware integration and reduces the complexity
of programming required to create a user interface. While this wide range of
capabilities is attractive, LabVIEW requires a yearly license to be purchased
with prices ranging from 3200 NOK/year to 53640 NOK/year. Thus, finding
an open source alternative is attractive to universities and companies.

PyQt, combined with a communication framework, is one such open
source alternative; it is a Python compatible version of Qt, which is a cross
platform software development kit owned by Nokia that can be used on
various software and hardware platforms with little or no change to the un-
derlying codebase [8]. PyQt is distributed under the General Public License
(GPL) meaning that we can use the free version of PyQt as long as we don’t
sell our code; if we want to sell our product, we must purchase a commercial
license of PyQt. It has the benefit of being run as a native application; thus,
it has the same capabilities and speed as other native applications. PyQt is
mainly used for developing multi-platform applications and GUIs, which is
why a separate communication framework is required to make it competitive
to LabVIEW. There are open source communication frameworks available

3

heinz
Highlight
what's large -- steep ?

in Python so this is not a limiting issue; one example is the Python module
minimalmodbus which always for communication with instruments from a
computer using the Modbus protocol.

PyQt capabilities are discussed within the framework of a GUI for a
specific laboratory experiment, known as the Two Tanks experiment, in this
report. It is worth noting that PyQt has many more capabilities that were
not used to create this particular GUI and thus not discussed in this report.
A description of the experiment is given in Chapter 2. The main PyQt
modules utilized for the creation of this GUI are explained in general in
Chapter 3. How each component was created for the GUI is discussed in
detail in Chapter 5.

4

Chapter 2

Experiment Description

2.1 General Description

A GUI was created for the Two Tank experiment in the Process Control
Laboratory and is illustrated in Figure 2.1. The setup consists of two tanks,
each of which has an inlet and an outlet stream. A thermocouple measures
the temperature inside each tank. The inlet stream consists of room temper-
ature water. On each outlet stream is a solenoid valve; this valve type means
that the valve is either completely open or closed. A controller is attached
to each solenoid valve.

The two outlet streams connect, after the valves, allowing the outlet
streams to mix. A thermocouple is located downstream of the mixing point
and measures the temperature of the mixed stream.

A single usb serial analog to digital converter is used for communication.
This allows a computer to receive measurements from the thermocouple,
send/receive signals to the solenoid valves to open or close, and send/receive
signals to the controllers. The purpose of this experiment is to tune the
controllers to get the temperature of the mixed stream to a desired set point.

Figure 2.1: Illustration of the two tank experiment

5

heinz
Highlight
not quite right

it is a communication module that connects usb to IEEE488 bus, a serial bus that connects units, mostly measurement units, with a simple twisted two-wire connection.

There is a terminator for each strang.

IEEE488 is the lowest level definition of the connection. Electrical definition.

On top come other protocols such as the modbus.

Missing discussion - layerd protocols and electrical conditions.

Chapter 3

PyQt Modules

3.1 Introduction

PyQt allows programers to use much of the functionality of Qt in Python;
this includes a comprehensive set of widgets, flexible layout managers, stan-
dard GUI features for applications, easy communication between application
components, threading classes, widget styles, input/output and networking,
support for QtDesigner, etc [6].

PyQt4 has a number of Python extension modules that makes it conve-
nient to program GUIs. For the Two Tank experiment, we utilized the two
following main modules: QtCore and QtGui. The QtCore module contains
the core of non-GUI classes, including event loop and Qt’s signal and slot
mechanism [6]. The QtGui module contains the majority of the GUI classes.

PyQt4 also has a couple of utility programs that are useful:

• pyuic4 corresponds to the Qt uic utility that converts GUIs created
using Qt Designer to Python code.

• pyrcc4 corresponds to the Qt rcc utility that embeds resources de-
scribed by a resource collection file in a Python module. This is only
included if Qt includes a XML module.

• pylupdate4 corresponds to the Qt lupdate utility and it extracts all
of the translatable strings from Python code and creates or updates
translate files. This is only included if Qt includes the XML module.

The pyuic4 can be used to translate GUIs created in QtDesigner into python
code that is then the GUI to be used. How to use pyuic4 is discussed in
more detail in Chapter 5.

Throughout this chapter there are a series of examples that illustrate
how to use some PyQt features. Further discussion of how these features
were used to construct a GUI for the Two Tanks experiment is conducted in
Chapter 5. Also in Chapter 5, illustrative code is discussed for several of the
widgets constructed for the GUI.

6

3.2 Widgets

The Qt widget module provides a set of UI elements that allow for the cre-
ation of classic desktop-style user interfaces. Widgets are the primary ele-
ments for creating user interfaces in Qt. They can display data and status
information, receive user input, and provide a container for other widgets
that should be grouped together [3]. A widget not embedded in a parent
widget is called a window.

The QWidget class gives the basic capability to render the screen and
handle user input events. Any UI elements that Qt provides are subclasses
of QWidget or are used in connection with a QWidget subclass.

3.2.1 Window and Dialog Widgets

Every GUI needs to have a main window that provides the screen space upon
which the user interface is built. Windows visually separate applications and
typically allow users to resize and position the applications as desired. This
can be created in PyQt by using the QMainWindow class.

QMainWindow is used to set up menus, toolbars, and dock widgets. To
add a menu bar to the main window, for example, a menu is created and then
added to the main window’s menu bar using menuBar(). QMainWindow has
its own layout where the programmer can add a menu bar, tool bar, other
dockable widgets, and a status bar. Once actions are created they must be
added to the main window. Both main windows and dialogs can be created
using QtDesigner or by manually coding them in Python.

If a QWidget is not assigned a parent, it automatically becomes a window.
Typically only one window is allowed to not have a parent: the primary
window.

Dialog windows are used as secondary windows that give the user options
or choices. These are created using the subclassing QDialog along with wid-
gets and layouts. PyQt provides a number of ready-made standard dialogs
that can be used for tasks like opening a file or selecting a font. Dialog
windows can also be used to create a window that confirms a user actually
wants to exit an application when the close button is pushed.

Window Geometry

The QWidget object provides several functions that allow the programmer to
handle a widget’s geometry. Some functions that can be used that include
the window frame are: x(),y(), frameGeometry(), pos() and move().

7

Functions that exclude the window frame (i.e. just affect the widget’s geom-
etry) are: geometry(), width(), height(), rect() and size(). Figure
3.1 illustrates most of the available functions to specify the geometry of the
window.

Figure 3.1: Specifying window geometry in PyQt [3]

3.3 Layout Managers

QLayout is the base class of geometry managers. It is an abstract base
class that is inherited by the concrete classes QBoxLayout, QGridLayout,
QFormLayout, and QStackedLayout, which all determine where widgets are
located in the main window. QLayout takes as input the name of a QWidget

and a parent. This specifies how a widget will appear in the main window.

3.3.1 Style

The style encapsulates the look and feel of a GUI. PyQt utilizes the QStyle

class to do all the drawing so that they look exactly like native widgets. This
means that whatever operating system the GUI is run on, it will adopted the
style of that OS. For more customizable appearances, QStyleSheets can be
used in addition to supplement what can already be done in QStyle.

8

3.3.2 Layouts

Layouts are a way to arrange child widgets within their own container. Each
widget gives its size requirements to the layout through the sizeHint and
sizePolicy properties and then the layout automatically distributes the avail-
able space. The designer can also specify where to position widgets within a
window as well.

3.3.3 Example

We look at a simple example of generating a window with a grid layout that
has 16 push buttons. This example shows how to create a window, specify
the layout, and create push buttons. The code below utilizes the three classes
QApplication, QWidget, QGridLayout and their methods [7].

1 import sys
2 from PyQt4 . QtCore import ∗
3 from PyQt4 . QtGui import ∗
4
5 def window () :
6 app = QApplication (sys . argv)
7 win = QWidget ()
8 g r id = QGridLayout ()
9

10 for i in range (1 , 5) :
11 for j in range (1 , 5) :
12 g r id . addWidget (QPushButton (”B”+str (i)+str (j)) , i , j)
13 win . setLayout (g r id)
14 win . setGeometry (100 ,100 ,200 ,100)
15 win . setWindowTitle (”PyQt”)
16 sys . e x i t (app . exec ())
17
18 i f name == ’ ma in ’ :
19 window ()

The result is shown in Figure 3.2.

9

Figure 3.2: Simple example using layout and window widgets

The first three lines define the widget QWidget and specify the layout
QGridLayout. Next, the for loop in lines 10-12 creates the sixteen dif-
ferent buttons QPushButton, labels them, and adds them to the grid lay-
out (addWidget). Then we add the layout to the widget (setLayout),
specify the widget geometry (setGeometry) and specify the window title
(setWindowTitle). Finally we specify what to do when the application is
launched. While this is a trivial example, it illustrates how few lines of code
are required to create a window, specify properties like the layout, geometry
and window tile, and add widgets to the window.

3.4 Threads, Signals and Slots

3.4.1 Threads

A thread contains different tasks to be performed. A software program may
contain multiple threads with each one having different tasks to be performed.
For most GUIs, it is common to create at least two different threads: one for
the main window (main thread), and one that can handle behind the scene
tasks (worker thread). This allows users to perform actions in the GUI while
the data collection still operates.

For a laboratory GUI, it is important to have at least two threads. One
thread that will collect data from the experiment and the other that will
handle any user requests emitted from the GUI. The main thread will be
idle until an action is performed in the GUI; then the main thread will take
priority over the worker thread and send the tasks to be performed. After
the tasks from the main thread are performed, the worker thread tasks will
then continue. The tasks contained in a thread are specified using signals

10

and slots.

3.4.2 Signals and Slots

All QObject types support the signal and slot mechanism. These objects
announce state changes and events like a checkbox being checked/unchecked
or a button being clicked. Signals and slots allow for communication between
objects. A signal is emitted when something happens in the application, i.e.
when a user clicks on a button. A slot is a function that is called in response
to a particular signal and contains some specified action to perform. When
a signal is connected to a slot, the slot is called when the signal is emitted.
If a signal is not connected to a slot, then nothing happens.

The signal/slot mechanism has the following features:

• A signal can be connected to many slots

• A signal may also be connected to another signal

• A slot can be connected to many signals

• Connections can be direct or queued

• Connections can be made across threads

• Signals do not have to be connected to slots

A signal has the methods connect(), disconnect() and emit(); these
implement the associated functionality. PyQt4 automatically defines sig-
nals for all Qt’s built-in signals and new signals can be defined as class
attributes using pyqtSignal(). You can specify the signal type by writing
int,str,float inside pyqtSignal. This means that the signal will only
accept data of the specified type.

Signals are connected to slots using the connect() method of a signal.
Signals can be disconnected from one or more slot using the disconnect()

method. Signals are emitted using the emit() method of a bound signal.
Whenever a signal is emitted, by default PyQt throws it away unless the
signal is connected to a slot.

A Python callable (i.e. a function) can be used as a slot by marking
it explicitly as a slot using the pyqtSlot() function decorator. It is also
possible to define slots without marking it explicitly; this works by connecting
a signal to a Python callable.

11

heinz
Highlight
Event-discrete nature of the interface. --> the user generates events. Also the program may generate events and ask the user to respond.

3.4.3 Example

This example demonstrates the use of signal and slots in PyQt [1].

1 import sys
2 from PyQt4 import QtGui , QtCore
3
4 class Example (QtGui . QWidget) :
5
6 def i n i t (s e l f) :
7 super (Example , s e l f) . i n i t ()
8
9 s e l f . i n i t U I ()

10
11 def i n i t U I (s e l f) :
12
13 l cd = QtGui .QLCDNumber(s e l f)
14 s l d = QtGui . QSl ider (QtCore . Qt . Hor izonta l , s e l f)
15
16 vbox = QtGui . QVBoxLayout ()
17 vbox . addWidget (l cd)
18 vbox . addWidget (s l d)
19
20 s e l f . setLayout (vbox)
21 s l d . valueChanged . connect (l cd . d i sp l ay)
22
23 s e l f . setGeometry (300 , 300 , 250 , 150)
24 s e l f . setWindowTitle (’ S i gna l & s l o t ’)
25 s e l f . show ()
26
27 def main () :
28
29 app = QtGui . QApplication (sys . argv)
30 ex = Example ()
31 sys . e x i t (app . exec ())
32
33 i f name == ’ ma in ’ :
34 main ()

This creates the GUI shown in Figure 3.3.

12

Figure 3.3: Simple example of use of signals and slots

First define the LCD number using QLCDNumber and the slider QSlider

(lines 13-14). Then we define the layout (QVBoxLayout) and add the two wid-
gets to it (addWidget). We then connect the slider so that when it changes,
it emits the new value on the LCD number display (line 21). Finally, we
specify the window geometry and the title.

Here the signal of the slider, sld.valueChanged, is connected to the
display slot of the lcd number. Therefore, when the user slides the slider
bar, the number is emitted and displayed above. Again this trivial example
illustrates how few lines of code are required to create a simple GUI thanks
to PyQt.

13

Chapter 4

Using QtDesigner

4.1 What is Qt Designer?

QtDesigner is a software program that allows for visual design and building
of graphical user interfaces. You can design widgets, dialogs, or whole main
windows using a simple drag and drop interface; Figure 4.1 illustrates the
QtDesigner user interface using the Main Window template. This gives the
added benefit of being able to preview designs and check that they work as
desired before writing any code. QtDesigner has some precoded elements
such as: layouts, spacers, buttons and containers. This can be useful for
users who are new to programming or to those who need to quickly create a
GUI. Additional custom widgets can be added to the QtDesigner, which was
done for the Two Tank experiment.

Figure 4.1: Blank Main Window template in QtDesigner

In QtDesigner, you simply drag and drop the desired components into
a MainWindow. You can change the image used in the GUI for any of the
components by changing the pixmap in the Property Editor. To connect
the widgets together using signals and slots, click on the “Edit Signals and

14

Slots” button in the Widget Box. This will allow you to connect the widgets
together and select from the available signals and slots in each widget.

QtDesigner generates a XML .ui file to store designs but the uic utility
can be used to generate code that will create the user interface. To specifically
create Python code, pyuic4 should be used in the command line to translate
the design to Python code. Exactly how to use this interface is outlined in
further detail below.

4.1.1 pyuic4

The pyuic4 is a command line interface to the uic module and the following
syntax should be used:

1 pyuic4 [opt ions] . ui−f i l e

This allows you to transform any GUIs made in QtDesigner into Python code
which can then be launched and used as GUI.

4.2 Installing FellesLab Widgets

Before you can create your own GUI using the widgets that have been created
for the Two Tanks experiment, you must set the following path (assuming
Python 2.7 is used):

1 export PYQTDESIGNERPATH = ‘ ‘ [use r] / l i b /python2 .7/ s i t e−packages /
2 f e l l e s l a b / q t p l u g i n s ”

Then you must launch the QtDesigner from the terminal:

1 open −a de s i gne r #for Mac OSx
2 des igner−qt4 #for Ubuntu (Linux)

This will launch the QtDesigner with all available FellesLab widgets. Cur-
rently there are five available widgets: thermocouple, real-time plotting of 1
CV and 2 MVS, solenoid valve, PID controller, and a trio of buttons (start,
stop, and pause). When loaded into QtDesigner, they should appear in the
left hand column in the Widgets Box and be listed under QFellesLabWidgets
(Figure 4.2).

15

Figure 4.2: QtDesigner Widget Box with QFellesLabWidgets

Then you can use the widgets as you would any other built-in widget to
create a GUI.

16

Chapter 5

Two Tanks GUI

5.1 Installation

To use the Two Tanks GUI, the following dependencies are required (only
been tested on Ubuntu and Mac OSx):

• Ubuntu (Linux)

1 sudo apt i n s t a l l python−s e r i a l python−pip qt4−de s i gne r
2 qt4−dev−t o o l s pyqt4−dev−t o o l s pyqtgraph
3 sudo pip i n s t a l l minimalmodbus

• Mac OSx (using Mac Ports)

1 sudo port i n s t a l l qt4−mac qt4−c reator−mac py27−pyqt4
2 py27−pip py27−s e r i a l pyqtgraph
3 sudo pip i n s t a l l minimalmodbus

The felleslab module can be downloaded from GitHub: https://github.

com/sigveka/FellesLab.
After these dependencies are installed and the module has been down-

loaded, the following install procedure should be used:

1 python setup . py bu i ld
2 python setup . py i n s t a l l −−p r e f i x = ‘ ‘${HOME}”

Each time you want to run the GUI, you must append the path to the Python
path so that you can import the felleslab module:

1 export PYTHONPATH=${PYTHONPATH}/ [path to f e l l e s l a b]

In addition, if any changes are made to the code, the install must be rebuilt.

17

https://github.com/sigveka/FellesLab
https://github.com/sigveka/FellesLab

5.2 How it Works

At its current stage in development, the GUI for the Two Tanks Experiment
is shown in Figure 5.1.

Figure 5.1: Two tanks laboratory GUI

There are two operation modes for the experiment: manual control or
automatic control. The operation mode is determined by turning the con-
troller on or off using the radio button located in the controller widget (upper
right corner). In manual mode, users can open or close the solenoid valves
by clicking on the valve images. If the valve is open, the image will be white;
if the valve is closed, the image will be red (Figure 5.2).

Figure 5.2: Open and closed valves, respectively

18

In manual mode, the user can set the manipulated variable set point in
the controller widget. The information flow in manual mode is illustrated in
Figure 5.3.

Figure 5.3: GUI Manual Mode

In automatic control, the user can no longer close or open the valves;
thus clicking on the valve images in this mode will result in no action being
performed. Instead, the state of the valves is manipulated by the controller.
Users manually input the desired controller settings in the controller widget
box in the GUI. In the same box, users can specify the controlled variable set
point. In this mode, the controller will decide what the valve settings should
be by using a separate algorithm. Currently this controller algorithm has not
been implemented. The information flow in automatic mode is illustrated in
Figure 5.4.

Figure 5.4: GUI Automatic Mode

When the GUI is first launched, users will notice at the bottom of the
GUI three buttons: start, stop and pause. Of the three buttons only the
start button is enabled initially, i.e. is the only button that can be pressed.
Pushing the start button begins the data collection and also changes the state
of the button. The real time plotting of the temperature and valve position
begins. The start button becomes disabled and the pause and stop buttons
become enabled. If the pause button is pressed, the data collection is paused
meaning that data is still being recorded but not displayed in the real-time
plots. If the stop button is pressed, the data collection is stopped and all

19

heinz
Note
Thermocouple widget --> a nonlinear transformation block ?

nope see below -- this is a linear transformation block.

measurements are written out to a file and then cleared from memory. The
state space diagram of the three buttons is illustrated in Figure 5.5.

Figure 5.5: State space illustration of start, pause and stop buttons

There are three plots that update in real time; one plot of the temperature
versus time and the other two plots show the two valve positions versus time.
The data shown in the plots is saved in a data file for convenience. The plot
widget is connected to the thermocouple and solenoid valve widgets so that
it can receive data from the sampling. When a new sample is received from
either widget, it is then added to the appropriate plot.

Behind the scenes, the sampling of the temperature and the solenoid valve
positions is being conducted. Here we utilize two Python modules: pyserial
and minimalmodbus. The analog to digital converter used in the Two Tanks
experiments uses a USB serial connection that allows a sampling frequency of
10 Hz. Due to the hardware, we can only send or receive one signal at a time.
As previously mentioned, the GUI has two threads: one main thread and one
worker thread. The main thread gets priority over the worker thread; the
sampling is done in the worker thread and the main thread sends any signals
from the GUI. This means that get one sample at a time and if we have to
send any input to the laboratory, this sampling gets delayed until the action
from the main thread is completed.

From the thermocouple, the temperature reading is given as a byte inte-
ger. The thermocouple is a JType thermocouple so we know the range and
that it is linear in this range. We can use a linear equation to convert this
byte integer into a relevant temperature reading. This is done automatically
in the felleslab module.

20

heinz
Highlight
machine

heinz
Highlight

5.3 Custom Widget Examples

The widgets below were created for the Two Tanks experiment. However,
they were written as generically as possible so that the widgets could be
utilized in other GUIs with no or minor changes required. The code given
in the widgets below is for illustrative purposes so that each widget could
be run on its own (without needing the felleslab module); the implemented
code for the GUI utilizes much of the code below so the idea is still the
same. The solenoid valve, thermocouple widgets, and the code required
for communication are not discussed here since they were written by Sigve
Karolius. The full GUI source code can be found on GitHub as discussed at
the beginning of this Chapter.

5.3.1 Start, Stop, Pause Buttons Widget

The start, stop, and pause buttons illustrate a few of the previously metioned
built in PyQt widgets such as: QMainWindow, QWidget, QPushButton, QApplication,

QPixmap, QHBoxLayout, QVBoxLayout, QIcon, QCoreApplication, and pyqtSlot.
The buttons are grouped together into one widget; this could be added to
QtDesigner since a plugin file has also been coded for it. The widget is
coded such that the buttons are enabled or disabled depending on which one
is clicked as discussed above. Figure 5.6 shows how the buttons would look
in a GUI.

Figure 5.6: Start, Pause and Stop button widget

The code below creates and displays this trio of buttons.

1 import sys
2 from PyQt4 . QtGui import (QPushButton , QWidget , QIcon ,
3 QApplication , QPixmap , QHBoxLayout , QVBoxLayout ,

21

heinz
Highlight
latex - encapsulate each term separately --> allows for splitting the line.

4 QMainWindow)
5 from PyQt4 . QtCore import QCoreApplication , pyqtS lot
6 from f e l l e s l a b . i c on s import ∗
7
8 class MainWindow(QMainWindow) :
9

10 def i n i t (s e l f , parent = None) :
11 super (MainWindow , s e l f) . i n i t (parent)
12 s e l f . button widget = ButtonWidget (s e l f)
13 s e l f . setCentra lWidget (s e l f . button widget)
14 s e l f . setWindowTitle (’Two Tank Experiment ’)
15 s e l f . setWindowIcon (QIcon (’ chemistry−lab−instrument . svg ’))
16
17 #Button Widget
18 class ButtonWidget (QWidget) :
19
20 def i n i t (s e l f , parent) :
21 super (ButtonWidget , s e l f) . i n i t ()
22 s e l f . s t a t e = 0 #de f a u l t s t a t e o f i d l e
23 s e l f . i n i t U I ()
24 s e l f . StartButton . c l i c k e d . connect (s e l f . o n c l i c k)
25 s e l f . PauseButton . c l i c k e d . connect (s e l f . o n c l i c k)
26 s e l f . StopButton . c l i c k e d . connect (s e l f . o n c l i c k)
27
28 @property
29 def s t a t e (s e l f) :
30 return s e l f . s t a t e
31
32 @state . s e t t e r
33 def s t a t e (s e l f , va lue) :
34 s e l f . s t a t e = value
35
36 def i n i t U I (s e l f) :
37 #Def in ing Buttons
38 s e l f . StartButton = QPushButton (” Star t ”)
39 s e l f . StartButton . setObjectName (’ S ta r t ’)
40 s e l f . PauseButton= QPushButton (”Pause”)
41 s e l f . PauseButton . setObjectName (’ Pause ’)
42 s e l f . StopButton = QPushButton (”Stop”)
43 s e l f . StopButton . setObjectName (’ Stop ’)
44

22

45 #Button icons
46 i c o n s t a r t = QIcon ()
47 i con pause = QIcon ()
48 i c o n s t o p = QIcon ()
49 i c o n s t a r t . addPixmap (QPixmap(’ play . svg ’) ,
50 QIcon . Normal)
51 i c o n s t a r t . addPixmap (QPixmap(’ p l a y d i s a b l e d . svg ’) ,
52 QIcon . Disabled)
53 s e l f . StartButton . s e t I c on (i c o n s t a r t)
54 i con pause . addPixmap (QPixmap(’ pause . svg ’) ,
55 QIcon . Normal)
56 i con pause . addPixmap (QPixmap(’ paus e d i s ab l ed . svg ’) ,
57 QIcon . Disabled)
58 s e l f . PauseButton . s e t I c on (i con pause)
59 i c o n s t o p . addPixmap (QPixmap(’ stop . svg ’) ,
60 QIcon . Normal)
61 i c o n s t o p . addPixmap (QPixmap(’ s t o p d i s a b l e d . svg ’) ,
62 QIcon . Disabled)
63 s e l f . StopButton . s e t I c on (i c o n s t o p)
64
65 #Spec i f y i n g bu t ton s e t t i n g s f o r i n i t i a l s t a t e
66 i f s e l f . s t a t e == 0 : #i d l e (d e f a u l t s t a t e)
67 s e l f . StartButton . setEnabled (True)
68 s e l f . PauseButton . s e tD i sab l ed (True)
69 s e l f . StopButton . s e tD i sab l ed (True)
70 e l i f s e l f . s t a t e == 1 : #sampling
71 s e l f . StartButton . s e tD i sab l ed (True)
72 s e l f . PauseButton . setEnabled (True)
73 s e l f . StopButton . setEnabled (True)
74 e l i f s e l f . s t a t e == 2 : #paused
75 s e l f . StartButton . setEnabled (True)
76 s e l f . PauseButton . s e tD i sab l ed (True)
77 s e l f . StopButton . setEnabled (True)
78
79 #Def in ing Layout
80 hbox = QHBoxLayout ()
81 hbox . addStretch (1)
82 hbox . addWidget (s e l f . StartButton)
83 hbox . addWidget (s e l f . PauseButton)
84 hbox . addWidget (s e l f . StopButton)
85

23

86 s e l f . setLayout (hbox)
87
88
89 @pyqtSlot ()
90 def o n c l i c k (s e l f , event=None) :
91 send ing button = s e l f . sender () #ge t t i n g but ton name
92 btn name = str (send ing button . objectName ())
93 i f btn name == ’ Star t ’ :
94 o l d s t a t e = s e l f . s t a t e
95 s e l f . s t a t e = 1 #changing s t a t e to sampling
96 s e l f . StartButton . s e tD i sab l ed (True)
97 s e l f . PauseButton . setEnabled (True)
98 s e l f . StopButton . setEnabled (True)
99 e l i f btn name == ’ Pause ’ :

100 o l d s t a t e = s e l f . s t a t e
101 s e l f . s t a t e = 2 #changing s t a t e to paused
102 s e l f . StartButton . setEnabled (True)
103 s e l f . PauseButton . s e tD i sab l ed (True)
104 s e l f . StopButton . setEnabled (True)
105 e l i f btn name == ’ Stop ’ :
106 o l d s t a t e = s e l f . s t a t e
107 s e l f . s t a t e = 0 #changing s t a t e to i d l e
108 s e l f . StartButton . setEnabled (True)
109 s e l f . PauseButton . s e tD i sab l ed (True)
110 s e l f . StopButton . s e tD i sab l ed (True)
111
112 def main () :
113 app = QApplication (sys . argv)
114 GUI = MainWindow ()
115 GUI . show ()
116 sys . e x i t (app . exec ())
117
118 main ()

Lines 8-16 specify the GUI main window properties. The class MainWindow

simply gives instructions for how to create the GUIs main window. In this
case, we add the ButtonWidget and make it the main widget by setting it
be the central widget (setCentralWidget). The other two lines simply set
the window title and the icon; this requires the use of the widget QIcon to
convert an image file to an icon.

24

Lines 19-111 is the code for the class ButtonWidget; this creates the
three buttons, adds images to the buttons, specifies what actions to per-
form when a button state changes, and sets the layout for the widget. The
init method is a Python method that is a constructor method for a class.
init is called whenever an object of the class is constructed. This means

that whenever we create a ButtonWidget object we will perform the actions
included in this method. The full details of it will not be discussed here but
it is common to use this method in the creation of PyQt GUIs. Here we call
another function and connect the buttons to a PyQt slot; this slot specifies
what action is taken when each button is clicked.

The initUI function is where the buttons are created and their func-
tionality is programmed. First the three buttons, using QPushButton, are
created and given object names (lines 39-44). Next the buttons are given
icons using QIcon. We can use the widget QPixmap to specify icons that will
appear only when the button is in a specific state (i.e., Normal (enabled)
or Disabled). Each icon is then added to its respective button (lines 47-64).
Next we specify which buttons are enabled or disabled depending on the
state value (lines 67-78). Note that we manually set the state value in the
init . Currently the default is to have only the start button enabled but

this can be changed to fit the users needs/desires. The layout of how the
widget will look in the main window is then defined (lines 81-87). We want
all the buttons to be next to each other so we use the widget QHBoxLayout;
this horizontally aligns all the buttons.

Finally we create a slot using pyqtSlot where we specify what happens
when a button is clicked. This slot is only used because signals were con-
nected to it; this was done in the init function in lines 25-27. Once all
of this is programmed, we still need to display the GUI; this is what is done
in the function main. We then call this function and the GUI is displayed.

Note that in this example the buttons are not connected to anything so
they don’t perform any function. In a full GUI, each button (signal) would
be connected to a slot that would then specify some desired action. For
example, in the Two Tanks experiment, the start button would begin the
data collection and start the real-time plot; the pause button would pause
the real-time plot and the data collection; the stop button would end the
data collection and result in the data being written out to a file.

5.3.2 PID Controller Input Widget

This example illustrates a GUI where users can set a PID controller’s tuning
parameters and specify the set points. Users can set the gain, integral time
constant, derivative time constant, manipulated variable and controlled vari-

25

able values. In addition, the user can turn the controller on and off so manual
control can also be used. Note that this widget simply provides the desired
settings to a PID controller. It needs to be connected to a controller algo-
rithm for it to actually work as a controller. This example illustrates the use
of the following widgets and functionalities: QDoubleSpinBox, QGroupBox,
QRadioButton, QSlider, pyqtSlot and pyqtSignal. The final product is
as shown in Figure 5.7, where the figure on the left is what the widget looks
like when the controller is off and the figure on the right is what the widget
looks like when the controller is on.

Figure 5.7: Controller GUI

This is generated using the following code.

1 import sys
2 from PyQt4 . QtGui import (QGroupBox , QLabel , QDoubleSpinBox ,
3 QGridLayout , QHBoxLayout , QWidget , QApplication ,
4 QRadioButton , QIcon , QMainWindow , QSl ider)
5 from PyQt4 . QtCore import pyqtSlot , Qt , pyqtS igna l
6
7 class Window(QMainWindow) :
8 def i n i t (s e l f , parent=None) :
9 super (Window , s e l f) . i n i t (parent)

10 s e l f . c o n t r o l l e r = Contro l lerWidget (s e l f)
11 s e l f . setCentra lWidget (s e l f . c o n t r o l l e r)
12 s e l f . setWindowTitle (’ C o n t r o l l e r ’)
13
14 class Contro l lerWidget (QWidget) :
15
16 p ro po r t i on a l = pyqtS igna l (f loat)
17 i n t e g r a l = pyqtS igna l (f loat)
18 d e r i v a t i v e = pyqtS igna l (f loat)
19 MV sp = pyqtS igna l (f loat)
20 CV sp = pyqtS igna l (f loat)

26

21
22 def i n i t (s e l f , parent) :
23 super (Control lerWidget , s e l f) . i n i t ()
24 s e l f . i n i t U I ()
25 s e l f . on . togg l ed . connect (s e l f . b tn s ta t e)
26 s e l f . s e t p o i n t . valueChanged [str] . connect (s e l f . CVSetPoint)
27 s e l f . ga in . valueChanged [str] . connect (s e l f . c o n t r o l l e r s e t t i n g s)
28 s e l f . t au i . valueChanged [str] . connect (s e l f . c o n t r o l l e r s e t t i n g s)
29 s e l f . taud . valueChanged [str] . connect (s e l f . c o n t r o l l e r s e t t i n g s)
30 s e l f . MV manual . s l i d e r R e l e a s e d . connect (s e l f . mv state)
31
32 def i n i t U I (s e l f) :
33 #Group box
34 group box = QGroupBox(’ C o n t r o l l e r S e t t i n g s ’)
35
36 #Spin but ton Labe l s
37 gain = ”K_c”
38 Kc = gain . decode (’ ut f−8 ’)
39 s e l f . g a i n l a b e l = QLabel (Kc)
40 s e l f . g a i n l a b e l . s e t S t y l e S h e e t (” font : 25 pt”)
41 time1 = ”τ_i”
42 tau i = time1 . decode (’ ut f−8 ’)
43 s e l f . t a u i l a b e l = QLabel (t au i)
44 s e l f . t a u i l a b e l . s e t S t y l e S h e e t (” font : 25 pt ”)
45 time2 = ”τ_d”
46 taud = time2 . decode (’ ut f−8 ’)
47 s e l f . t a u d l a b e l = QLabel (taud)
48 s e l f . t a u d l a b e l . s e t S t y l e S h e e t (” font : 25 pt”)
49
50 #Spin bu t tons
51 s e l f . ga in = QDoubleSpinBox ()#Gain
52 s e l f . t au i = QDoubleSpinBox ()#In t e g r a l time cons tant
53 s e l f . taud = QDoubleSpinBox ()#Der i va t i v e time cons tant
54 s e l f . GAIN 0 = s e l f . ga in . va lue ()
55 s e l f . TAUI 0 = s e l f . t au i . va lue ()
56 s e l f .TAUD 0 = s e l f . taud . va lue ()
57 s e l f . ga in . setKeyboardTracking (Fa l se)
58 s e l f . t au i . setKeyboardTracking (Fa l se)
59 s e l f . taud . setKeyboardTracking (Fa l se)
60 s e l f . s e t p o i n t = QDoubleSpinBox ()#CV se t p o i n t
61 s e l f . s e t p o i n t . setHidden (True)

27

62 s e l f . s e t p o i n t l a b e l = QLabel (’CV Setpo int ’)
63 s e l f . s e t p o i n t l a b e l . setBuddy (s e l f . s e t p o i n t)
64
65 #On−Off Buttons
66 s e l f . on = QRadioButton (” C o n t r o l l e r On”)
67 s e l f . on . setChecked (Fa l se)#Defau l t to have c o n t r o l l e r o f f
68
69 #S l i d e r
70 s e l f . MV manual = QSl ider (Qt . Hor i zonta l)
71 s e l f . MV manual label = QLabel (’MV Setpo int ’)
72
73 #Layout
74 contro l sLayout = QGridLayout ()
75 contro l sLayout . addWidget (s e l f . g a i n l a b e l , 0 , 0)
76 contro l sLayout . addWidget (s e l f . gain , 0 , 1)
77 contro l sLayout . addWidget (s e l f . s e t p o i n t l a b e l , 0 , 2)
78 contro l sLayout . addWidget (s e l f . s e tpo in t , 0 , 3)
79 contro l sLayout . addWidget (s e l f . t a u i l a b e l , 1 , 0)
80 contro l sLayout . addWidget (s e l f . taui , 1 , 1)
81 contro l sLayout . addWidget (s e l f . MV manual label , 1 , 2)
82 contro l sLayout . addWidget (s e l f . MV manual , 1 , 3)
83 contro l sLayout . addWidget (s e l f . t aud labe l , 2 , 0)
84 contro l sLayout . addWidget (s e l f . taud , 2 , 1)
85 contro l sLayout . addWidget (s e l f . on , 2 , 2)
86 contro l sLayout . setRowStretch (3 , 1)
87
88 layout = QHBoxLayout ()
89 layout . addLayout (contro l sLayout)
90 s e l f . setLayout (layout)
91
92
93 @pyqtSlot ()
94 def CVSetPoint (s e l f , event=None) :
95 s e l f . s e t p o i n t v a l u e = s e l f . s e t p o i n t . va lue ()
96 s e l f . CV sp . emit (s e l f . s e t p o i n t v a l u e)
97
98 @pyqtSlot ()
99 def c o n t r o l l e r s e t t i n g s (s e l f , event=None) :

100 i f s e l f . ga in . va lue () != s e l f . GAIN 0 :
101 s e l f . GAIN 0 = s e l f . ga in . va lue ()
102 s e l f . g a in va lue = s e l f . ga in . va lue ()

28

103 s e l f . p r op o r t i o na l . emit (s e l f . g a in va lue)
104 e l i f s e l f . t au i . va lue () != s e l f . TAUI 0 :
105 s e l f . TAUI 0 = s e l f . t au i . va lue ()
106 s e l f . t a u i v a l u e = s e l f . t au i . va lue ()
107 s e l f . i n t e g r a l . emit (s e l f . t a u i v a l u e)
108 e l i f s e l f . taud . va lue () != s e l f .TAUD 0:
109 s e l f .TAUD 0 = s e l f . taud . va lue ()
110 s e l f . taud va lue = s e l f . taud . va lue ()
111 s e l f . d e r i v a t i v e . emit (s e l f . taud va lue)
112
113 @pyqtSlot ()
114 def btns ta t e (s e l f , event=None) :
115 i f s e l f . on . isChecked () == True :
116 s e l f . s e t p o i n t . setHidden (Fa l se)
117 s e l f . MV manual . setHidden (True)
118 else :
119 s e l f . s e t p o i n t . setHidden (True)
120 s e l f . MV manual . setHidden (Fa l se)
121
122 @pyqtSlot ()
123 def mv state (s e l f , event=None) :
124 MV setpoint = s e l f . MV manual . va lue ()
125 s e l f . MV sp . emit (MV setpoint)
126
127 a p p l i c a t i o n = QApplication (sys . argv)
128
129 #Making Window
130 window = Window()
131 window . setWindowTitle (’ Group Box ’)
132 window . r e s i z e (220 , 100)
133 window . show ()
134
135 sys . e x i t (a p p l i c a t i o n . exec ())

As was the case for the previous example, all the code in class Window is for
the creation of the main window and is only used for testing/this example to
display the controller widget. The class ControllerWidget contains all the
necessary code to design a GUI for a PID controller input.

In the class ControllerWidget, six signals are defined using pyqtSignal:
one for the proportional part of the controller, one for the integral part

29

of the controller, one for the derivative part of the controller, one for the
controller state (off or on) and the other two are for the manipulated variable
set point and the controlled variable set point respectively (lines 16-20).
Each signal is given a specified object type to accept; in this case all the
objects except only floats. Next in the init function, the signals are
connected to slots lines(25-30); the slots are defined in lines 93-128. The
first slot CVSetPoint takes the controlled variable set point and emits the
value whenever the controlled variable set point is changed by the user. The
second slot controllersettings emits the new tuning parameter if either
the gain, integral time constant or derivative time constant is changed. The
third slot btnstate changes what is displayed if the controller is turned on
by clicking the radio button. The final slot mv state emits the manipulated
variable set point if it is changed.

In the initUI function, the components of the PID controller input are
constructed. Using QGroupBox, we can collect all the components into one
box making it easy to use this as a widget/plugin in QtDesigner. We then
create all the labels for the spin buttons; we can use utf-8 and html notation
to get greek letters and subscripts (lines 37-48). The spin buttons are then
created using QDoubleSpinBox; this allows for float values in comparison
to QSpinBox which only accepts integer values (lines 51-63). We turn the
keyboard tracking off so that signals will only be emitted when the user has
set the whole desired value; if it was on then a signal would be emitted for
every value change instead of just the final value (lines 57-59). For example,
if a user wanted to type 1,35 then a signal would be emitted for 1, for 1,3
and for 1,35; since this is not desired, we turn off the keyboard tracking.

Next we create an on button and use a QRadioButton and set the default
state to be unchecked using setChecked(False) since we want the default
state of the controller to be off. When the controller is turned off, we can
set the manipulated variable value using the slider. This is created using
QSlider and when the value is changed it emits a signal. This signal is
connected to a slot so that the new manipulated variable value is emitted.
Finally we specify the layout of the controller; we use QGridLayout to create
the layout of the controllers and then add this to the overall layout using
QHBoxLayout (lines 74-90).

5.3.3 Plotting Widget

The plotting widget illustrates the use of pyqtgraph which is a graphics and
user interface library for Python that makes use of the QtGUI platform (via
PyQt) for its high performance graphics and numpy for calculations [2]. An
example of the plots is shown below for a set of data points.

30

heinz
Note
does the user need to be able to read the state of the controller (on | off) ?

Figure 5.8: Illustration of real-time plotting utilities

This is generated using the code displayed below. This code differs slightly
from the code implemented in the GUI but it illustrates the idea of how to
use pyqtgraph to plot data in real time. The main differences lie in the data
that is plotted. In the actual GUI, the plotting widget is connected to the
thermocouple and solenoid valve widgets and receives the emitted temper-
ature and valve position. Also note that here we simply programmed the
plotting widget to be inside the main window, which is of course not how it
is implemented in the lab GUI.

31

1 from PyQt4 . QtGui import ∗
2 from PyQt4 . QtCore import ∗
3 import numpy as np
4 import pyqtgraph as pg
5 import random
6 import sys
7 import datet ime
8
9 class Window(QMainWindow) :

10 def i n i t (s e l f) :
11 super (Window , s e l f) . i n i t ()
12 s e l f . setWindowTitle (’ Plot ’)
13 s e l f . setGeometry (50 ,50 ,800 ,800)
14 s e l f . home ()
15 global i , v ,T, s
16 i = 0
17 #Valve p o s i t i o n
18 v = [0 , 100 , 100 , 100 , 0 , 0 , 0 , 100 , 0 , 0 , 0 , 0 , 0 , 100 , 100 , 0]
19 #Temperature
20 T = [20 , 21 , 21 , 22 , 23 , 23 , 24 , 22 , 21 , 22 , 25 , 25 , 22 , 20 , 21 , 22]
21 #Time
22 s = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16]
23
24 def home(s e l f) :
25 pg . setConf igOpt ion (’ background ’ , ’w ’)
26 pg . setConf igOpt ion (’ foreground ’ , ’ k ’)
27
28 #Temperature p l o t widge t
29 l a b e l S t y l e = { ’ c o l o r ’ : ’ k ’ , ’ font−s i z e ’ : ’ 16px ’}
30 s e l f . tempPlt = pg . PlotWidget (s e l f)
31 s e l f . tempPlt . s e t T i t l e (’ Contro l l ed Var iab le ’ , s i z e=’ 16px ’)
32 s e l f . tempPlt . s e tLabe l (’ l e f t ’ , ’ Temperature ’ ,
33 un i t s=’C ’ ,∗∗ l a b e l S t y l e)
34 s e l f . tempPlt . s e tLabe l (’ bottom ’ , ’Time ’ ,
35 un i t s=’ s ’ ,∗∗ l a b e l S t y l e)
36 s e l f . tempPlt . move (200 ,50)
37 s e l f . tempPlt . r e s i z e (450 ,200)
38 s e l f . t imer3 = pg . QtCore . QTimer ()
39 s e l f . t imer3 . t imeout . connect (s e l f . cUpdate)
40 s e l f . t imer3 . s t a r t (200)
41

32

42 #Valve 1 p l o t widge t :
43 s e l f . va lve1Pl t = pg . PlotWidget (s e l f)
44 s e l f . va lve1Pl t . s e t T i t l e (’ Manipulated Var iab le ’ , s i z e=’ 16px ’)
45 s e l f . va lve1Pl t . s e tLabe l (’ l e f t ’ , ’ Valve Pos i t i on ’ ,
46 un i t s=’\% ’ ,∗∗ l a b e l S t y l e)
47 s e l f . va lve1Pl t . s e tLabe l (’ bottom ’ , ’Time ’ ,
48 un i t s=’ s ’ ,∗∗ l a b e l S t y l e)
49 s e l f . va lve1Pl t . move (200 ,550)
50 s e l f . va lve1Pl t . r e s i z e (450 ,200)
51 s e l f . t imer3 = pg . QtCore . QTimer ()
52 s e l f . t imer3 . t imeout . connect (s e l f . cUpdate)
53 s e l f . t imer3 . s t a r t (200)
54
55 #Valve 2 p l o t widge t :
56 s e l f . va lve2Pl t = pg . PlotWidget (s e l f)
57 s e l f . va lve2Pl t . s e t T i t l e (’ Manipulated Var iab le ’ , s i z e=’ 16px ’)
58 s e l f . va lve2Pl t . s e tLabe l (’ l e f t ’ , ’ Valve Pos i t i on ’ ,
59 un i t s=’\% ’ ,∗∗ l a b e l S t y l e)
60 s e l f . va lve2Pl t . s e tLabe l (’ bottom ’ , ’Time ’ ,
61 un i t s=’ s ’ ,∗∗ l a b e l S t y l e)
62 s e l f . va lve2Pl t . move (200 ,300)
63 s e l f . va lve2Pl t . r e s i z e (450 ,200)
64 s e l f . t imer3 = pg . QtCore . QTimer ()
65 s e l f . t imer3 . t imeout . connect (s e l f . cUpdate)
66 s e l f . t imer3 . s t a r t (200)
67
68 s e l f . show ()
69
70 def cUpdate (s e l f) :
71 global i , v , T, s
72 s e l f . tempPlt . p l o t (np . array ([s [i]]) , np . array ([T[i]]) ,
73 pen=None , symbol=’ o ’)
74 s e l f . va lve1Pl t . p l o t (np . array ([s [i]]) , np . array ([v [i]]) ,
75 pen=None , symbol=’ s ’)
76 s e l f . va lve2Pl t . p l o t (np . array ([s [i]]) , np . array ([v [i]]) ,
77 pen=None , symbol=’ s ’)
78 i += 1
79
80 def run () :
81 app=QApplication (sys . argv)
82 GUI = Window()

33

83 sys . e x i t (app . exec ())
84 run ()

First we define some values that we can plot for this illustrative example (lines
17-22). Next we set up the three different plots; since all three plots have the
same format we will just discuss the details of the temperature plot. First
we define the plot configuration by specifying that the background should be
white and the foreground should be black (lines 25-26). Next we specify the
label style for the plot (line 29) and then create the temperature plot using
pyqtgraph.PlotWidget (line 30). We then set the plot title using setTitle

(line 31) and axis label using setLabel (line 32-35). The plot location and
size is then specified inside the Main Window using move and resize. Finally
we get a timer going for the plot using QtCore.QTimer. We then connect
the timer to the pyqtSlot cUpdate so that whenever the timer timesout the
actions specified in the slot are performed (line 39). Finally we specify that
the timer starts with a timeout interval of 200 milliseconds.

34

Chapter 6

Conclusion

PyQt is an attractive open source alternative to LabView for the creation of
GUIs for laboratory experiments. While LabView does provide more built-in
utilities, the expensive price tag makes it unviable in certain circumstances.
PyQt allows for a lot of customization making it applicable to a wide range
of applications.

PyQt is a well documented Python module making it relatively easy to
figure out how to use it. Using PyQt requires basic knowledge of Python
syntax and logic; however, it is also possible to use QtDesigner to create a
GUI for people who are not as comfortable with programming. Since PyQt
is open source, it is also easier to maintain or change any of the code for the
GUI; this is in strong contrast to LabView which can require professional
specialists to provide maintence. PyQt has numerous functionalities beyond
those discussed in this report making it possible to create GUIs for just about
any desired application.

This project proved that it is possible to use PyQt to create a GUI for a
laboratory experiment. While some further work needs to be done to improve
the GUI, the current functionalities are: receive temperature measurements,
plot temperature measurements in real time, send controller settings, open/-
close solenoid valves, and start/pause/stop the experiment. Additional work
that needs to be done to improve the GUI is outlined below:

• Inherit maximum and minimum values for the set point from the ma-
nipulated variable and controlled variable types

• Check that the experiment is connected; check that connection is to
correct hardware

• Implement the controller algorithm

• Validate that all signals and slots work as desired

• Validate the plotting widget

• Confirm that data is saved as desired

The GUI widgets were even constructed in such a way as to be generic (with
the exception of the plot widget) so that they may be utilized to make other
graphic user interfaces.

35

This project utilized many of the built-in capabilities of PyQt and showed
the proof of concept that PyQt could be used to develop a GUI that works
with real time data collection and excepts user inputs. Based on this exam-
ple usage, PyQt is recommended as a feasible replacement for LabView to
develop GUI for laboratory experiments.

36

Bibliography

[1] Jan Bodnar. Events and Signals in PyQt4. Nov. 2017. url: http://
zetcode.com/gui/pyqt4/eventsandsignals/.

[2] Luke Campagnola. PyQtGraph. Nov. 2017. url: http://www.pyqtgraph.
org/documentation/index.html.

[3] The Qt Company. Qt Documentation. Oct. 2017. url: http://doc.qt.
io/qt-5/.

[4] Computer Hope. GUI. Oct. 2017. url: https://www.computerhope.
com/jargon/g/gui.htm.

[5] National Instruments. Labview. Oct. 2017. url: http://www.ni.com/
en-us/shop/labview.html.

[6] Riverbank Computing Limited. PyQt4 Reference Guide. Oct. 2017. url:
http://pyqt.sourceforge.net/Docs/PyQt4/.

[7] Tutorials Point. PyQt-QGridLayout Class. Nov. 2017. url: https://
www.tutorialspoint.com/pyqt/pyqt_qgridlayout_class.htm.

[8] Wikipedia. Qt (software).

[9] Wikipedia. Software Industry.

37

http://zetcode.com/gui/pyqt4/eventsandsignals/
http://zetcode.com/gui/pyqt4/eventsandsignals/
http://www.pyqtgraph.org/documentation/index.html
http://www.pyqtgraph.org/documentation/index.html
http://doc.qt.io/qt-5/
http://doc.qt.io/qt-5/
https://www.computerhope.com/jargon/g/gui.htm
https://www.computerhope.com/jargon/g/gui.htm
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://pyqt.sourceforge.net/Docs/PyQt4/
https://www.tutorialspoint.com/pyqt/pyqt_qgridlayout_class.htm
https://www.tutorialspoint.com/pyqt/pyqt_qgridlayout_class.htm

	Contents
	List of Figures
	Introduction
	Experiment Description
	General Description

	PyQt Modules
	Introduction
	Widgets
	Window and Dialog Widgets

	Layout Managers
	Style
	Layouts
	Example

	Threads, Signals and Slots
	Threads
	Signals and Slots
	Example

	Using QtDesigner
	What is Qt Designer?
	pyuic4

	Installing FellesLab Widgets

	Two Tanks GUI
	Installation
	How it Works
	Custom Widget Examples
	Start, Stop, Pause Buttons Widget
	PID Controller Input Widget
	Plotting Widget

	Conclusion

